Index of papers in April 2015 that mention
  • RNA-Seq
Daifeng Wang, Koon-Kiu Yan, Cristina Sisu, Chao Cheng, Joel Rozowsky, William Meyerson, Mark B. Gerstein
Abstract
Next, using human ENCODE ChlP-Seq and TCGA RNA-Seq data, we are able to demonstrate how Loregic characterizes complex circuits involving both proximally and distally regulating transcription factors (TFs) and also miRNAs.
Discussion
Given the multitude of high quality expression (e.g., RNA-seq, small RNA-seq ), and regulation (e.g., ChIP-seq, CLIP-seq, DNase-seq) datasets available, Loregic can be further used to study cooperations among other regulatory elements such as splicing factors, long non-coding RNAs, etc., or RF cooperations during other biological processes such as embryonic developments for the model organisms in modENCODE project [44].
Gene expression, transcription factor and miRNA datasets
In the study of gene expression in human leukemia, we obtained RNA-seq RPKM expressions from The Cancer Genome Atlas Data Portal [51] for 19,798 protein-coding genes and 705 miRNAs across 197 and 188 AML samples, respectively.
Introduction
In this study, we use data derived from ChIP-Seq and RNA-Seq eXperiments to predict the cooperative patterns between RFs as they co-regulate the eXpression of target genes.
Introduction
On a genome-wide scale ChIP-Seq provides regulatory information about wiring between RFs and targets, while RNA-Seq provides gene eXpression data; by combining these two data types we are able to go beyond the regulatory activities of individual RFs and investigate the relationships between higher order RF groups.
RNA-Seq is mentioned in 5 sentences in this paper.
Topics mentioned in this paper: