Index of papers in March 2015 that mention
  • optimal control
Vassilios Christopoulos, James Bonaiuto, Richard A. Andersen
Action selection for decision tasks with competing alternatives
Stochastic optimal control theory has proven quite successful at modeling goal-directed movements such as reaching [26], grasping [69] and saccades [70].
Action selection for decision tasks with competing alternatives
Despite the growing popularity of stochastic optimal control models, the preponderance of them are limited only to single goals.
Action selection for decision tasks with competing alternatives
In the current study we decompose the complex problem of action selection with competing alternatives into a mixture of optimal control systems that generate policies 71’ s to move the effector towards specif1c directions.
Author Summary
It combines dynamic neural field theory with stochastic optimal control theory, and includes circuitry for perception, eXpected reward, effort cost and decision-making.
Conclusions
By combining dynamic neural field theory with stochastic optimal control theory, we provide a principled way to understand how this competition takes place in the cerebral corteX for a variety of visuomotor decision tasks.
Discussion
Each neuron in the motor plan formation DNF is linked with a stochastic optimal control schema that generates policies towards the preferred direction of the neuron.
Discussion
By combining dynamic neural fields with stochastic optimal control systems the present framework explains a broad range of findings from experimental studies in both humans and animals, such as the influence of decision variables on the neuronal activity in parietal and premotor cortex areas, the effect of action competition on both motor and decision behavior, and the influence of effector competition on the neuronal activity in cortical areas that plan eye and hand movements.
Dynamic neural fields
The following sections describe how we integrate dynamic neural field theory with stochastic optimal control theory to develop a computational framework that can eXplain both neural and behavioral mechanisms underlying a wide variety of Visuomotor decision tasks.
Introduction
It builds on successful models in dynamic neural field theory [25] and stochastic optimal control theory [26] and includes circuitry for perception, expected reward, selection bias, decision-making and effort cost.
optimal control is mentioned in 15 sentences in this paper.
Topics mentioned in this paper:
Adrian M. Haith, David M. Huberdeau, John W. Krakauer
Abrupt and gradual shifts in reach direction as a consequence of optimal control under goal uncertainty
Abrupt and gradual shifts in reach direction as a consequence of optimal control under goal uncertainty
Abrupt and gradual shifts in reach direction as a consequence of optimal control under goal uncertainty
We combined this decision-making process with an optimal control model of movement generation.
Introduction
Although generally well accepted, these existing interpretations of intermediate movements are at odds with more contemporary theories of movement execution based on optimal control theory [20].
Introduction
Here we show how intermediate movements can be understood within an optimal control framework if the control policy takes into account an evolving decision about the location of movement goals.
Limitations of the model
Recent advances in solution methods for optimal control problems [35] are inapplicable due to the structure of our control problem.
Limitations of the model
Optimal control theory has previously been invoked to account for intermediate movement strategies [36,37].
Optimal action selection amid evolving uncertainty about task goals
Solving this optimal control problem is not straightforward.
Optimal action selection amid evolving uncertainty about task goals
This precludes usual solution methods for optimal control problems which require an endpoint cost that is quadratic in the state.
optimal control is mentioned in 8 sentences in this paper.
Topics mentioned in this paper: