Index of papers in PLOS Comp. Biol. that mention
  • computational model
Daniel Bendor
Author Summary
We investigated the underlying mechanisms of these two neural representations using a computational model of a cortical neuron.
Comparison of model-based predictions and real neuronal responses
Using our computational model , we could make several predictions concerning how stimulus-evoked responses may differ between synchronized, non-synchronized, and mixed-response neurons, which were testable in our dataset of real neurons.
Impact of spontaneous rate on computational model
Impact of spontaneous rate on computational model
Impact of spontaneous rate on computational model
Our computational model operated with a fixed spontaneous rate (~4 spk/s), close to the median spontaneous rate encountered in our real neuronal population (3.8 spk/s).
Methods).
According to our computational model (Fig.
Methods).
In our computational model , the time-varying conductance used to simulate the neuron’s synaptic input was simplified to only approximate the AMPA and GABA-A currents evoked by the acoustic pulse train, with a time-constant of 5 ms [24] (see Methods).
Model parameters underlying rate and temporal representations
In our computational model , roughly equal proportions of synchronized, non-synchronized, and mixed response neurons were generated (Fig.
Responses to pulse trains in real and simulated cortical neurons
In order to directly compare our computational model with real data, we reanalyzed a previously published dataset [15, 18, 26], composed of single-unit responses to acoustic pulse trains from the auditory cortex of four awake marmosets (Callithrix jacchus) (see Methods).
Responses to pulse trains in real and simulated cortical neurons
Using the same criteria as in our computational model , 70% of units responding to our acoustic pulse train stimuli (147/210 units) could be classified as having synchronized, non-synchronized or a mixed response (Fig.
Responses to pulse trains in real and simulated cortical neurons
Thus, the general features of temporal and rate representations produced by synchronized and non-synchronized neurons, respectively, were preserved in our computational model .
Results
We developed an integrate-and-fire computational model of an auditory cortical neuron [23], based on previously reported data obtained using in-Vivo, Whole-cell recordings from rodent primary auditory corteX [24] (see Methods).
computational model is mentioned in 20 sentences in this paper.
Topics mentioned in this paper:
Ka Wai Lin, Angela Liao, Amina A. Qutub
Abstract
In this study we connect for the first time microscale insulin signaling activity with macroscale glioblastoma growth through the use of computational modeling .
Author Summary
Here, we developed a computational model of insulin signaling in glio-blastoma in order to study this pathway’s role in tumor progression.
Development of a computational model
Development of a computational model
Development of a computational model
Conversely, computational models of insulin signaling exist [42, 43], but have only been applied to other applications, including articular cartilage [44], ovarian cancer [45] , and human skeletal muscle [46], and exclude molecules of interest for brain cancer cells [44, 47].
Development of a computational model
The computational model revealed how inhibition of specific molecular interactions in the insulin signaling pathway could lead to significant reduction of glioblastoma growth.
Discussion
In conclusion, we have been able to achieve a deeper understanding of the interactions between key factors in the insulin signaling pathway through our computational model .
Introduction
To that end, we developed a computational model that captures the dynamics of insulin signaling.
computational model is mentioned in 7 sentences in this paper.
Topics mentioned in this paper:
Fiete Haack, Heiko Lemcke, Roland Ewald, Tareck Rharass, Adelinde M. Uhrmacher
A comprehensive model of WNT/,B-catenin signaling
With regard to the continuous autocrine signal, our findings are in line with a previous study of our group, where we used a simplified computational model to provide evidence for the self-induced autocrine/paracrine WNT signaling in hNPCs [44].
Abstract
In addition we provide the first stochastic computational model of WNT/B-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent B-catenin activation.
Author Summary
The stochastic multilevel computational model we derive from our experimental measurements adds to the family of existing WNT models, addressing major biochemical and spatial aspects of WNT/beta-catenin signaling that have not been considered in existing models so far.
Endogenous ROS signaling as potential trigger for ,B-catenin signaling
To summarize, based on our computational model , we demonstrated, that DVL may either act as amplifier or as direct inducer of canonical WNT signaling.
Nuclear ,B-catenin dynamics during early differentiation in human neural progenitor cells
To explore the signaling mechanisms of both, the continuous activation pattern in untreated and in particular the early immediate response in raft-deficient cells, we perform a number of simulation studies based on a validated computational model of WNT signaling we will present in the following.
Results/Discussion
Computational modeling is increasingly applied to derive or test hypotheses, that in most cases arise from experimental data.
transcription signal.
To evaluate, whether an interplay between ROS-induced and lipid raft dependent WNT/fi-catenin signaling can explain our experimental results we apply computational modeling .
computational model is mentioned in 7 sentences in this paper.
Topics mentioned in this paper:
João Couto, Daniele Linaro, E De Schutter, Michele Giugliano
Abstract
Using computational models we show that neither channel noise nor a realistic cell morphology are responsible for the rate dependent shift in the phase response curve.
Author Summary
Furthermore, we address potential explanations for the observed transition using computational modeling .
Computational modeling
Computational modeling
Computational modeling
Active conductances are thought to modulate the shape of the PRC, and therefore computational modeling [7, 47, 48] could be a powerful tool to dissect the ionic bases of the PRC.
Supporting Information
PRCs computed for a highly detailed computational model of a Purkinje cell with synaptic activation in the dendritic tree.
computational model is mentioned in 5 sentences in this paper.
Topics mentioned in this paper:
Daniel K. Wells, Yishan Chuang, Louis M. Knapp, Dirk Brockmann, William L. Kath, Joshua N. Leonard
Abstract
To investigate these phenomena at a level currently inaccessible by direct observation, we developed a computational model of a nascent metastatic tumor capturing salient features of known tumor-immune interactions that faithfully recapitulates key features of existing experimental observations.
Author Summary
To address this need we developed a computational model capturing the current understanding of how individual metastatic tumor cells and immune cells sense and contribute to the tumor environment, which in turn enabled us to investigate the complex, collective behavior of these systems.
Discussion
Given the challenges associated with investigating such systems in vivo, particularly at early stages of tumor development, we developed a computational model serving as a both a conceptual tool and an in silico test bed for building understanding of such phenomena.
Introduction
Given the aforementioned challenges associated with investigating TME dynamics experimentally, especially at the early stages of cancer initiation and progression, a complementary strategy is the use of computational modeling .
computational model is mentioned in 4 sentences in this paper.
Topics mentioned in this paper:
Joon-Young Moon, UnCheol Lee, Stefanie Blain-Moraes, George A. Mashour
Confirmation of node degree/directionality relationship in a computational model of human brain networks
Confirmation of node degree/directionality relationship in a computational model of human brain networks
Discussion
However, despite these recent empirical and computational model studies, there has been no general explanatory mechanism linking global topology, local node dynamics and directionality between interacting nodes based on mathematical derivation.
Introduction
Emerging empirical data and computational models suggest that the relative location of neuronal populations in large-scale brain networks might shape the neural dynamics and the directional interactions between nodes, which implies a significant influence of global topology on local dynamics and information flow [16—2 1].
Introduction
In addition, computational models and simulation studies of global brain networks have revealed that hub nodes (i.e., nodes with extensive connections) have a significant influence on the local node dynamics and the direction of information flow in normal and pathological brains [19—2 1].
computational model is mentioned in 4 sentences in this paper.
Topics mentioned in this paper:
Adam S. Shai, Costas A. Anastassiou, Matthew E. Larkum, Christof Koch
Supporting Information
The computational model .
Supporting Information
(a) Diagram of the computational model colored by section name.
Supporting Information
(c) The computational model parameters.
computational model is mentioned in 4 sentences in this paper.
Topics mentioned in this paper:
Nathan F. Lepora, Giovanni Pezzulo
Results
Here we incorporate these assumptions in four computational models and test them in a simulation of a simple perceptual choice task involving action.
Results
In the first study, we simulate the decision trajectories for four computational models with increasingly sophisticated interaction between the decision making and action components.
Study 1: Decision trajectories during embodied choice
All computational models that we compare below are built on the drift-diffusion model [1], which is a model of the cognitive processes involved in making simple two-choice decisions.
computational model is mentioned in 3 sentences in this paper.
Topics mentioned in this paper: