Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
Stuart Aitken, Shigeyuki Magi, Ahmad M. N. Alhendi, Masayoshi Itoh, Hideya Kawaji, Timo Lassmann, Carsten O. Daub, Erik Arner, Piero Carninci, Alistair R. R. Forrest, Yoshihide Hayashizaki, Levon M. Khachigian, Mariko Okada-Hatakeyama, Colin A. Semple , the FANTOM Consortium

Abstract

However, the specificity of the response across stimuli and cell types, and the roles of non-coding RNAs are not well understood. Using a large collection of densely-sampled time series expression data we have examined the induction of the immediate-early response in unparalleled detail, across cell types and stimuli. We exploit cap analysis of gene expression (CAGE) time series datasets to directly measure promoter activities overtime. Using a novel analysis method for time series data we identify transcripts with expression patterns that closely resemble the dynamics of known immediate-early genes (IEGs) and this enables a comprehensive comparative study of these genes and their chromatin state. Surprisingly, these data suggest that the earliest transcriptional responses often involve promoters generating non-coding RNAs, many of which are produced in advance of canonical protein-coding IEGs. IEGs are known to be capable of induction without de novo protein synthesis. Consistent with this, we find that the response of both protein-coding and non-coding RNA IEGs can be explained by their tran-scriptionally poised, permissive chromatin state prior to stimulation. We also explore the function of non-coding RNAs in the attenuation of the immediate early response in a small RNA sequencing dataset matched to the CAGE data: We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line. Our computational statistical method is well suited to meta-analyses as there is no requirement for transcripts to pass thresholds for significant differential expression between time points, and it is agnostic to the number of time points per dataset.

Author Summary

These genes, known as immediate-early genes (IEGs), are regulated at the level of transcription of the messenger RNA, and at subsequent RNA processing levels. These rapid responders are then rapidly switched off in normal cells. Immediate-early genes are involved in many cellular processes, including differentiation and proliferation, that are often dysregulated in cancer where they become continuously active. We characterise IEGs in a genome-wide sequencing dataset that captures their transcriptional response over time. Using a novel analysis technique, we identify both protein-coding and non-coding genes that are activated comparably to IEGs and investigate their properties. We examine how IEGs are switched off, including through microRNAs, small non-coding RNAs that act to control the level of key IEGs. We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line.

Introduction

The source and duration of the induction signal can determine alternative cell fates, for example, transient signalling may result in cell proliferation, whereas sustained signalling gives rise to cell differentiation [2]. The activation of ErbB receptors by epidermal growth factor (EGF) or heregulin (HRG) in the MCF7 breast cancer cell line exemplifies the impact of such transient or sustained signalling on cell fate [3, 4]. The well-studied mitogen-activated kinase (MAPK), and in particular extracellular signal-reg-ulated kinase (ERK) pathways, play important roles in signal transduction in the immediate-early response as well as many other cellular responses [1]. The over-expression of immediate early genes is correlated with cancer progression, and some of the best studied are known onco-genes [5]. However, in spite of the biomedical importance of the immediate-early response, our understanding of both its initiation and attenuation is far from complete. We lack a comprehensive account of how the mechanisms underlying these phenomena vary across stimuli and cell types, and few studies have explored the full diversity of transcripts involved

Necessarily, there is a delay in the expression of SRGs since, unlike IEGs, they require de novo protein synthesis. However a set of delayed IEGs may also be present concurrently with SRGs which can complicate efforts to study IEGs. It is believed that delayed IEGs can be identified by their increased length, greater number of exons and lack of transcription factor activity in addition to the delayed timing of their expression in comparison with typical IEGs [6]. Delayed IEGs also typically lack the conserved binding sites for SRF, NF-KB and CREB generally found in IEGs [6]. Chromatin architecture plays a critical role in IEG expression [7]. The presence of CpG islands and constitutively active chromatin, high polymerase densities at promoters that may indicate a role for the regulation of RNAPII, and a single CAGE peak at the promoter are all features reported to be associated with IEGs [1, 6]. However, many studies have been restricted to a limited number of promoters, and examine a single cell type and stimulus. The diversity of cell types, stimuli and genes investigated in the literature makes it difficult to generalize about the molecular mechanisms underlying the induction of even the best studied IEGs [8]. A more comprehensive understanding of the initiation of the immediate-early response, and its less well studied attenuation are required. Studies of IEG induction show distinct differences between the kinetics of pre-mRNA and mature mRNA which are particularly evident for delayed IEGs where the mature mRNA may peak up to 3 hours later than the precursor [6]. A transient overshoot in pre-mRNA production has been proposed as a strategy to shape the timing and magnitude of response in the face of the slow mRNA degradation kinetics that would otherwise determine the kinetics [9]. The transient induction of phosphorylated c-Fos in MCF7 cells in response to HRG is thought to be due to multiple negative feedback loops in the signalling and transcription network [3, 4]. The attenuation of the initial response of delayed IEGs to EGF was also shown to depend on negative feedback through de novo transcription in HeLa cells [10], but it is unknown whether negative feedback plays roles in other cell types or under other stimuli.

Recent studies have implicated splicing as an important factor controlling IEG expression, such that the F08 locus can remain transcriptionally active long after spliced mRNA production has ceased [11]. Others have established important roles for mature miRNAs in IEG regulation, with an early decrease in miRNA abundance permitting rapid induction of IEGs [12]. On the attenuation of the immediate-early response, detailed kinetic modelling of the transient upregulation of the Atf3 transcription factor (an inhibitor of Egr1) has concluded that, following induction, the mechanism whereby Atf3 is rapidly repressed is likely to involve newly-synthesised miRNA [13]. The transcription of primary miRNA transcripts (pri-miRNAs), and the subsequent role of the mature transcripts in the immediate-early response is unexplored in genome-wide data.

This class of transcripts is currently understudied, but lncRNAs are differentially expressed during differentiation, are preferentially localised in chromatin and have been proposed to ‘f1ne-tune’ cell fate via their roles in transcriptional regulation [14—16]. Genome-wide characterisation of histone modifications H3K4me3 and H3K27me3 at lncRNA has demonstrated common features with mRNA, whereas patterns of DNA methylation differ [17]. Until now we have lacked a comprehensive study of non-coding RNA (ncRNA) species active in the immediate-early response, encompassing different cell types and stimuli.

In particular, the CAGE time series datasets obtained for MCF-7 cells and human primary aortic smooth muscle cells are a unique resource for the study of the temporal response of stimulated human cells [19]. As CAGE data is obtained from the 5’ end of capped mRNA transcripts, it is expected to reflect the initial burst of overproduction of mRNA at promoters better than other expression data, and hence is well suited to explore the immediate-early response. Using these unique datasets, and a novel approach to time series analysis, we identify a comprehensive set of transcripts whose expression patterns are altered in response to a stimulus genome-wide, including all ncRNA transcripts present. We define kinetic signatures as response patterns corresponding to the likely solutions of kinetic models, including a signature representing the classical IEG response. Transcripts are categorised according to the kinetic signature they fit best, if any, and the categories are then explored to identify the over-representation of known IEGs and the known characteristics of IEGs. Our methods are well suited to meta-analyses, and we are able to rigorously compare transcript classifications in the immediate-early responses of different cell types under different extracellular stimuli, revealing novel commonalities among a diverse array of cell type and stimulus specif1c transcripts. This work is part of the FANTOM5 project. Data downloads, genomic tools and co-published manuscripts are sum-marised here http:/ / fantom.gsc.riken.jp/ 5/ .

Results

These patterns were intended to capture mRNA transcription in response to a stimulus. Such eXponential kinetics are characteristic of formalised systems biology models (comparable With observed and modelled mRNA and pre-mRNA eXpression in [4, 9]), and may reflect changes in both transcription and degradation rates over time [20]. The genome-Wide CAGE data considered here necessarily included transcripts Whose functions are unknown thus we began by hypothesising the possible kinetics they may display, rather than by constructing a detailed, interconnected systems model. Kinetic signatures serve as prototypical patterns reflecting changes in regulation, and are used here as a means to categorise time course responses for each transcript present. We focused on four particular time series datasets: human aortic smooth muscle cells (AoSMC) treated with FGF2 and with IL-lfi (9 time points from 0 to 360 min; 3 replicates per treatment; IL-lfi will be referred to as Ile hereafter), as well as human MCF7 breast cancer cells treated with EGF and HRG (16 time points from 0 to 480 min; 3 replicates per treatment). Aortic smooth muscle cells are primary cells which are components of blood vessels. They are normally growth-quiescent in the normal adult vessels, but are activated by injury, or exposure to growth factors (including FGF2) and pro-inflamma-tory cytokines (including IL1b). These cues are sensed by these cells through changes in imme-diate-early gene expression, and can lead to increased proliferation and migration.

More than one CAGE cluster could be assigned to each Ensembl gene, since clusters indicate transcription start sites (TSSs) and many genes possess multiple alternative promoters. A minimum of 500,000 mapped tags were required for a sample to be included in the analysis, and at least two biological replicates per time point. This led to exclusion of five libraries from the AoSMC-FGF2 time series, three from AoSMC-IL1b and one from MCF7-EGF. Supplementary text 1 of Arner et al. (2015) [19], and references therein, describes CAGE library preparation, CAGE library quality control, sequencing and transcription start site clustering. Supplementary text 2 of [19] describes the quality control and experimental protocols for the AoSMC and MCF7 experiments relevant to the present manuscript, presenting both CAGE and qRT-PCR data for specific genes.

The peak and dip signature functions require a rate constant 6 which is not an explicit parameter of the model. Instead, the rate is calculated from the switch time tS (see Eqs 1 and 2 in Materials and methods) and the piecewise function specifies that the response reaches 90% of p2 at ts. This formulation ensures that the initial rise in expression shows an exponential characteristic that is not limited to the almost linear initial change in expression that might otherwise result from a small value of the rate constant 6. See Materials and methods for additional details of model definitions.

The ratio of the maximum expression to expression at time 0 was typically less than 2 as shown in Fig 1B. For the analysis of time series in this context, we distinguished early peaks from late peaks by bounding the prior range for the tS parameter by 1-240 minutes (the first half of the time series), and by 240 minutes-end time (the second half) of the experiment respectively.

The likelihood function was derived on the basis of maximum entropy and is applicable to any time series dataset with replicated data. CAGE clusters were assigned to one of the exponential kinetic signatures or to the linear model according to the value of log Z. A cluster was assigned to a ‘no decision’ category if the values of log Z (and the associated standard deviations) computed for each model did not permit a clear assignment. An example of fitting early peak and linear models to an EGR1 time course is presented in Fig 1C. Further details of the specification of priors for model parameters, and model selection are given in Materials and methods.

Core regulatory components in the immediate-early response

The assignment of clusters to signatures showed a slight preference for the early peak category (S1 Fig and S2 Fig). In contrast, relatively few clusters were assigned to the linear signature (due in part to the decision making procedure that aimed to distinguish nonlinear from linear expression patterns). Time series that could not be confidently annotated were excluded from further analysis, see S3 Fig for examples where an annotation could and could not be made.

Eleven genes exhibited the early peak response in all four data sets, including eight known IEGs (FOS, FOSB, EGRl, DUSPl, CTGF, CYR61, SCRNPl, and FOSLI, see S4A Fig). Known IEGs IUN and TRIBl were among the additional seven IEGs and five transcription factors that had this response in three of the four data sets, see S4 Fig for the numbers of Ensembl genes in the intersection of the kinetic signature categories across all data sets. The two MCF7 data sets had a greater number of common annotations than did the two AoSMC data sets. CAGE data and the fitted kinetic signatures for IUN, FOS, EGRl and DUSPl are plotted in Fig 1D (with additional examples in S5 Fig). Although immediate early genes are typically rapidly upregulated, they may also be downregulated as is the case for JUN in AoSMC-FGFZ. Lists of the genes assigned to kinetic signatures and the corresponding model parameters are provided in Supporting File 1. The picture that emerges suggests commonalities at the core of the regulatory networks governing the immediate-early response in different scenarios, as seen in the known IEGs and TFs shared across cell types and stimuli. Beyond this are larger numbers of known and possibly novel IEGs, demonstrating the specificity of the response to each stimulus. In fact in each case the vast majority of genes assigned to the early peak signature (candidate IEGs or SRGs) were specific to a particular cell type and stimulus. This offers an explanation for the ambiguity in the literature on the immediate-early response, with remarkably diverse arrays of genes implicated across different studies [11].

The early peak signature is enriched for lEGs and signalling pathways

Considering CAGE clusters with kinetic signature classifications across datasets increased the recovery of known IEGs. The proportion of clusters associated with known IEGs increased from 1.8% in the data set as a whole to 3.0% in the set of clusters where a reliable classification to any signature could be made, and then to 5.1% in the set of early peak clusters. The early peak category was significantly overrepresented for known IEGs as shown in Table 1. This set of 194 IEGs was curated from the literature by the FAN-TOM5 consortium (published as supplementary S6 Table in [19]). It should ne noted that this list may contain genes that are not necessarily activated rapidly in all cell types and by all stimuli. However, to qualify as an IEG these genes must be expressed without de novo protein synthesis. The enrichment reported in Table 1 is with respect to the set of clusters with any assigned kinetic signature, which is already enriched for IEGs (p < 0.002). The measure of effect size is the odds ratio (the proportion of clusters in a specific category that are IEGs, divided by the corresponding proportion of non-IEGs in that category). Notably, IEGs were enriched in the early peak category without specifying a particular threshold on ts. Our categorisation according to the shape of the response identified a larger set of genes that retained enrichment for known IEGs in comparison with an alternative approach where we looked for enrichment of IEGs within early peak genes within specific bounds on ts.

Therefore the early peak category captures an expression pattern common to IEGs, and thereby enhances the detection of IEGs. Again, classifications of the data into distinct characteristic profiles appear most useful for large time series datasets.

The terms listed in 81 Table were also overrepresented in the set of early peak genes when all four data sets were combined (but did not have a significant q value after multiple-testing correction in this case). Terms relevant to the immediate-early response included regulation of gene expression, regulation of transcription from RNA polymerase II promoter, regulation of RNA metabolic process and regulation of metabolic process. In addition, RNA splicing and several associated terms were found in all four data sets combined, but with q values exceeding 0.05 (p = 9.57E-05; q = 0.07), indicating that early peak genes have a major impact on the regulation of transcription and splicing, consistent with previous studies of IEGs [1]. When gene lists were combined in this way, the number of genes in the target set increased from around 10% to 30% of the background set hence enrichment was more difficult to demonstrate.

Pathways associated with the early peak signature included the transforming growth factor (TGF) beta signalling pathway, and the platelet derived growth factor (PDGF) signalling pathway, which play critical roles in cellular proliferation and development [24] and shares the downstream targets with the ErbB receptor signalling pathway, the receptors for EGF and HRG and all those belong to the members of receptor tyrosine kinases (RTK) family. RTK signalling is initiated upon binding of ligands to the corresponding receptor complex and this leads to the phosphorylation of other cellular proteins. The phosphatidylinositol 3 (P13K) pathway is also overrepresented. PI3K binds to tyrosine phosphopeptide sites of receptors serving diverse functions. RTKs can stimulate cells through either the MAPK pathway, the AKT/PI3K pathway, or a combination of the two [25]. The promoters of IEGs [UN and F08 contain a number of elements that are targets for MAPK signalling [26]. The TGF-beta, integrin and Toll-like receptor (stimulating NF-KB) signalling pathways also provide a route for signals to pass from the extracellular environment to the nucleus [5, 27, 28]. Pathway analysis indicates that kinetic signatures identify the transcription of genes linked to the RTK, AKT, MAPK and NF-KB pathways. Table 2. Pathway analysis. Pathway TGF-beta signaling pathway Oxidative stress response Toll receptor signaling pathway Integrin signalling pathway Cadherin signaling pathway Apoptosis signaling pathway Notch signaling pathway Signature early peak early peak early peak early peak early peak early peak late peak late peak late peak late peak decay P value P values for the over-representation of CAGE clusters in 73 Panther gene sets containing at least 20 genes. P values are calculated by hypergeometric test on the counts of clusters from all four data sets combined. Only pathways with p values 3 0.05 are listed (those with a FDR significant at 0.1 are indicated

Kinetics and chromatin features underlying IEG induction

Values for t, in the range 1-100 min were more prevalent for early peak clusters in comparison with clusters annotated with the dip signature (see S7 Fig). When the rates, 6, for early peak, dip and decay signatures were considered (note that the decay model is parameterised by the half life th rather than the switch time ts, see Eq 3 in Materials and methods), dip and decay signatures showed similar distributions to each other, and both were shifted towards higher values in comparison with early peak rates. This may indicate that the (pre) mRNA kinetics of switch-ing-on are faster than switch-off kinetics as might be expected due to the latter being dominated by relatively slow mRNA degradation rates in many cases [9]. The distribution of t5 values for early peak clusters of known IEGs was consistent with the overall distribution (S7 Fig) which may indicate that the larger set of transcripts we assigned to the early peak signature may be part of a regulatory module under the same control as IEGs, or may include uncharac-terised IEGs.

It has been proposed that nucleotide binding proteins are among the feedback regulators responsible for the attenuation of the immedi-ate-early response to EGF [10]. This set of delayed early genes has been shown to be activated in waves following FOS, JUN and EGRl expression in HeLa cells [10]. Following Amit et al. (2007) [10], we constructed a set of 444 genes assigned with the Gene Ontology annotation for nucleotide binding GO:0000166 (IEA assignments were excluded). Only three of these genes were transcription factors and six were IEGs therefore these sets were essentially disjoint. The set of nucleotide binding genes was overrepresented in the early peak signature in all four data sets combined (p = 0.007), and for AoSMC-FGF2 and MCF7-EGF data sets individually (p = 0.018 and p = 0.003 respectively). The timing of immediate early and nucleotide binding gene expression is shown in Fig 2A and 2B where it can be seen that in AoSMC-FGFZ, AoSM-C-Ile and MCF7-EGF data the largest proportion of known IEGs is found in the 30-90 min interval when ts values are binned in 30 min intervals (the proportion of clusters annotated to known IEGs is expressed as a percentage of all clusters within each 30 min period according to 1‘5). This pattern was less apparent in the MCF7-HRG cell line where the proportion of known IEGs found in an interval exceeded the overall average towards the end of the time course. Further, in AoSMC-FGF2, AoSMC-Ile and HRG treated MCF7 cells there was a peak in IEGs around 3 hours after stimulus (180-210min) suggesting genes currently described as IEGs may also have a role later in the immediate-early response than would be expected. Surprisingly, the proportion of nucleotide binding genes was maximal in the 60-90 min interval for the AoSM-C-IL1b and MCF7-EGF data, and in all cases many nucleotide binding genes were activated concurrently with IEGs in contrast with previous reports [10]. It is also worth noting that significant downregulation did not occur until the second hour, and this may require both early induction of transcriptional repressors and the RNA degradation proteins BTG2 and ZFP36 (tristetraprolin) [29]. Thus, cellular responses to FGF2, EGF, Ile and HRG may be distinguished by the variable timing of factors (whether they are known IEGs or nucleotide binding proteins) that constitute and repress each response.

The timing of IEG induction and that of known transcription factors (TFs) is contrasted in Fig 2C where a relatively consistent pattern of IEG activation beginning with FOS, DUSP1 and IER2, and continuing with IUN, C-MYC, EGR1 and DUSP2 can be seen. A number of non-IEG transcription factors were also activated: TBX2 activates early and RUNX1 late in the timelines. After HRG stimulation, genes typically peak later than after EGF stimulation: on average, the genes listed in Fig 2C take 26 min longer to reach their peak after HRG stimulation in comparison with EGF stimulation. This may be related to the fact that the HRG-induced repressor of FOS transcription requires new protein synthesis, whereas this is not required following EGR1 induction [4]. The average difference between Ile and FGF2 stimulation in AoSMC was approximately 10 min for genes assigned to the early peak category. See 88 Fig for timelines for Aortic smooth muscle cells and for non-coding genes.

The transcriptional repressor NAB2 peaked relatively late in both MCF7 time courses. This is consistent with reports that NAB2 represses EGR1 and thereby attenuates the immediate-early response in HeLa cells stimulated with EGF [10]. Nucleotide binding genes found to peak within 240 min in both MCF7 time courses included the transcription factor RUNX1 and three IEGs: TRIB1, SIK1 and GEM. Significant upregulation of NAB2, TRIB1 and GEM was previously found in MCF7 cells following EGF and HRG treatment (see 81 Table in [3]) These genes may play a role in the attenuation of the immediate-early response in MCF7 cells. Notably, physical interactions between RUNX1 and IUN, F08 and MYC are listed in BioGRID [31], as are interactions between TRIB1 and MYC, and NAB2 and both EGR1 and EGR2. Interactions between [UN and both F08 and MYC are also listed.

Immediate early genes are typically shorter in length than the genome-wide average [6]. The mean length of genes for which we have CAGE cluster data was 64Kb, more than twice the mean length of the subset of known IEGs for which we have data (24Kb). The mean length of genes annotated with the early peak signature was close to the genome average (67Kb), indicating no enrichment for shorter genes, and hence that this category contains a mixture of IEGs, co-regulated and delayed early genes and their downstream targets.

Known IEGs were typically shorter in length and had lower t5 than nucleotide binding genes (combined data from all four datasets). Surprisingly, Fig 3A demonstrates that short IEGs ~ 1-5Kb in length were activated with broad range of kinetics, from the lowest to the highest switch time t5. Thus the typically short length of IEGs will decrease the time required for their transcription, but IEGs are not necessarily induced with equally rapid kinetics. The time at which short IEGs reach their transcriptional peak was up to three hours after the stimulus suggesting their activation rates coordinate their eXpression with diverse processes and pathways: late-acting IEGs are not delayed due to gene length. Further, many early peak genes not known to be IEGs fell within the range of characteristics of known IEGs: length from 1.2Kb-240Kb, t5 less than 210 min.

For example, the contour plotted at 120 min curves leftwards to identify those longer genes which were transcribed with lower ts whose complete transcription would peak at 120 min (assuming equivalent splicing regulation). The density for known IEGs was predominantly within the 120 min contour. In contrast, the density for nucleotide binding proteins was beyond this contour. Comparing the counts of early peak IEGs, nucleotide binding genes and TFs within the 90 min contour with those outside this contour shows 28% of early peak IEGs, 17% of nucleotide binding genes and 22% of TFs lie within this contour in comparison with the 18% average for early peak genes. IEGs were significantly enriched within the 90 min contour (p = 5.1e-5 by hypergeomet-ric test). Both early peak IEGs and TFs were enriched within the 120 min contour (p = 1.5e-4 and p = 0.04 respectively by hypergeometric test). While currently identified IEGs have distinct characteristics, our analysis also identifies a number of TFs induced on a similarly rapid timescale that may be part of the initial phase of the immediate-early response, or its attenuation.

The assignment of genes to kinetic signatures could also be used to eXplore their association with promoter-proxi-mal pausing through calculation of the travelling ratio. The travelling ratios for the union of all genes with CAGE clusters annotated as early peak in the two MCF7 data sets and for the set of known IEGs are presented in Fig 3C. The travelling ratio is the ratio of RNAPII ChIP density at the promoter to that over the gene body [33]. We calculated the ratio of exon 1 density (read depth/locus covered) to the density over all other exons. Using the RNAPII ChIP data (control) from MCF7 cells published by Welboren et al. [34], we found IEGs to be associated with pro-moter-proximal pausing (that is, with a greater travelling ratio than non-IEGs; p = 1.2e-9 by Wilcoxon rank sum test on 114 IEGs compared with 8438 non-IEGs), and that the larger set of early peak genes was also associated with pausing (p = 1.4e- 14; 1421 early peak genes compared with 7131 reference genes). The set of 65 early peak genes that were known to be IEGs shows notably high travelling ratios (p = 3.8e- 10; 65 genes compared with 8487 reference genes). The travelling ratio plots in Fig 3C illustrate these significant shifts towards increased ratios between promotor-proximal (exon 1) and gene body RNAPII density as the cumulative density curves shift rightwards.

Discovery of non-coding RNA genes active in the immediate-early response

A lower threshold was used for the initial data selection: A minimum sum of 3 TPM normalised by relative log expression (RLE) over the time course was used as a threshold to increase the number of time courses from the more conservative 10 TPM criteria used for protein coding genes. S9 Fig shows the overlap between the assignments to clusters. anRNA NEATl showed the early peak response in all four data sets, as did MALATl in three of the four sets. S 10 Fig plots the CAGE data and kinetic signatures for NEATl.

A small number of mature miRNA that respond to EGF signalling have been identified [12, 35], and, in yeast, lncRNA have been shown to poise GAL genes for rapid activation [36]. Clusters assigned to the early peak signature were overrepresented relative to other signatures for lncRNA and miRNA precursors (p = 0.013 and 3.8e-3, respectively, by hypergeometric test), and late peak and decay signatures were overrepresented for snRNA (p = 1.9e-4 and 0.022 respectively). Thus lncRNA and miRNA precursors showed an analogous kinetic response to IEGs. The distributions of t, for lncRNA, snoRNA, snRNA and miRNA assigned to the early peak category FM cacoonuu ts (min)

(B) Density plot of early peak gene length against tS for all RNA biotypes (grey symbols), lncRNA (red symbols) and miRNA precursors (blue symbols). anRNA and miRNA form distinct clusters of RNAs activated with a wide range of kinetics.

These distributions can be compared with those for protein coding genes, including known IEGs (S7 Fig). These RNA biotypes had more rapid kinetics as shown by the number with t, of less than 30 min. The association between ncRNA ts and length is shown in Fig 4B where it is apparent that lncRNA and miRNA precursors were activated with a range of kinetics—as was the case for known IEGs (compare with Fig 3). Naturally, these two classes of ncRNA have very different lengths, and miRNA precursors must be processed further to become part of an active complex.

Studies of known IEGs have suggested that they are transcribed from loci with constitutively permissive chromatin structure [1]. To determine the accessibility of CAGE clusters, read counts of

Protein-coding clusters assigned to the early peak category had significantly more reads than the remaining clusters (14% increase in mean read count, p = 2.1e-6 Wilcoxon rank sum test). Clusters associated with transcription factors were also in more accessible regions (p = 0.018), but, surprisingly, clusters assigned to known IEGs or nucleotide binding genes did not differ significantly from the reference set in either MCF7 time course (p > 0.08 by Wilcoxon rank sum test). We then explored the relationship between DNaseI counts and CAGE expression at time 0, maximum CAGE expression in the time course, and maximal fold change in CAGE expression across the time course for both MCF7 data sets. No predictive correlations were found between DNaseI and CAGE expression. However, we saw that CAGE expression at time 0 of greater than 10 TPM and DNaseI counts between 100 and 1000 were typical, whereas DNaseI counts of less than 100 were associated with TPM values of less than 10 at time 0. These observations suggest that a minimal level of chromatin accessibility is sufficient for the rapid activation of an immediate early gene on stimulus.

However, early peak lncRNA had significantly greater DNaseI counts than the remaining non-coding clusters (40% increase in mean read count, p = 1.3e-8 Wilcoxon rank sum test). 811 Fig shows the distribution of counts for lncRNA resembles that of early peak protein-coding genes. Early peak miRNA precursors had fewer counts on average than the reference, but not significantly so.

Multiple enhancer expression values arising from the many-to-many assignment of distal enhancers to genes [19, 39] were associated with genes by averaging. The mean enhancer expression of the union of early peak genes in MCF7 data was 74% of the mean in non early peak genes (2724 genes; p = 5.9e-07), and enhancer expression for IEGs was further reduced to 46% of the mean in non-IEGs (238 genes; p = 0.16). In contrast, enhancer activity for transcription factors was 30% greater than for non-TFs (901 genes; p = 2.5e-14). These results indicate that the promoters of IEGs and early peak genes are in accessible chromatin (but not more so than average in the case of IEGs), and are poised for transcription as shown by the high travelling ratios, but prior to stimulus they are not driven by enhancer expression. It is likely that this state is determined by specific transcription factors for IEGs and early peak genes.

It has been previously demonstrated that in response to EGF stimulation a set of 23 mature miRNA show a rapid reduction in expression that upregulates a large number of target mRNAs in non-tumori-genic MCF-10A breast epithelial cells [12]. These miRNA were named immediately downregu-lated miRNAs (ID-miRs) [12]. Many mRNA are repressed by more than one ID-miR, for example, EGR1 is targeted by hsa-mir- 191 and hsa-mir-212. In contrast, mature hsa-mir-21 was previously found to be upregulated on EGF stimulation [12, 35, 40]. Observing that the transcription of the host gene for hsa-mir-155 (an ID-miR) showed clear peaks in the time courses of AoSMC-FGF2, AoSMC-IL1b and MCF7-HRG cells (812 Fig), and that the precursor transcript of hsa-mir-21 showed early or late peaks in expression in three of the CAGE time course datasets we consider, we sought to investigate the relationship between miRNA-mediated repression and transcriptional attenuation, and to test whether or not kinetic signatures can be used to find correspondences between time course datasets. Utilising a small RNA sequencing dataset for MCF7 cells stimulated with HRG (9 time points from 0 to 480 min; 3 replicates per treatment, minimum library size 5,340,873 reads),

Of the 716 mirbase miRNA that passed a minimum expression criterion (sum of median nor-malised reads across the time course 2 10), 11.6% were assigned to a kinetic signature (early-Peak: 25; latePeak: 6; decay: 33; dip: 18; linear: 1;) a somewhat lower proportion than for CAGE data reflecting a greater variation between replicates. 813 Fig shows examples of the assignment of mature miRNA time courses to the dip and decay kinetic signatures that we expected to observe. None of the miRNA assigned to dip or decay signatures are previously-described ID-miRs. 814 Fig presents plots of the time courses for the eleven ID-miRs in the dataset. Surprisingly, only three of the eleven ID-miRs are downregulated from time 0, others show peaked or increasing profiles (the variation in the data is such that none of the ID-miRs can be assigned to a kinetic signature with our usual statistical criteria). These data indicate that ID-miRs may play diverse regulatory roles that are dependent on cell type and stimulus.

Making use of the TargetScan database of miRNA targets (version 6.2; http://www.targetscan.org) we found all targets for dip miRNAs. For 12 of the 15 dip miRNA present in TargetScan we observed a greater representation of miRNA targets in early peak genes than in a reference set of unregulated genes (namely, all protein-coding genes that could not be assigned to a kinetic signature in MCF7-HRG). The targets of seven of these miRNA were significantly overrepresented (by hypergeometric test): hsa-mir-139 (p = 2.6e-2); hsa-mir-224 (p = 1.1e-2); hsa-mir-522 (p = 1.5e-6); hsa-mir-548n (p = 9.8e-7), hsa-mir-676 (p = 3.2e-2), hsa-mir-3163 (p = 2.1e-7) and hsa-mir-3662 (p = 3.5e-3) and are candidate ID-miRs for MCF7 cells. The data for mature hsa-mir-3163 and two of its targets FOSB and EGR3 are shown in Fig 5A.

CAGE and miRNA expression data for these transcripts are presented together in Fig 5B where a lag between the rise in the CAGE signal and the recovery in the mature miRNA level for hsa-mir-320a can be seen, whereas the CAGE peak appears concurrent with the rise in mature hsa-mir-155 (none of these profiles satisfied our statistical criteria but significant changes occur between selected time points). Consistent with earlier reports on EGF stimulus, mature hsa-mir-21 increases in response to HRG as does the primary transcript (which was assigned to the early peak signature), see Fig 5B. Complex regulatory steps intervene between these two stages of miRNA maturity and impact on the stability of these transcripts hence there is no simple relationship between them. Further, it can be observed in Fig 5 and 813 Fig that there are often rapid fluctuations in mature miRNA in the first 100 min. Our kinetic models fit to the general trend which tends to have a minimum around 240 min, however, the rapid fluctuations may also be biologically significant in the first minutes after stimulus. 815 Fig plots the time course data for 27 mature miRNAs and the 41 CAGE clusters associated with their precursors in the MCF7-HRG experiment. Increases in CAGE expression may occur prior to increases in mature miRNA levels as can be seen for hsa-mir-21 and hsa-mir-222, or reductions in mature miRNA may occur in advance of reductions in CAGE expression as for hsa-mir-4800. It is readily apparent that there is no simple correlation between precursor and mature transcript abundance. A complete explanation of their relationship would account for the synthesis and stability of each species and is beyond the scope of the present manuscript. It has long been known that miRNA host genes may be protein coding or lncRNAs [41]. As noted above, the host gene for hsa-mir-155 is a lncRNA that is assigned to the early peak signature in three CAGE datasets. We also found MIR99AHG (host gene for hsa-mir-99a, hsa-let-7c and hsa-mir-125b2) and two other lncRNA whose locus contains miRNA to be similarly transiently upregulated in two or more datasets. The miRNA in host gene MIR99AHG are predicted to target 11 IEGs, hsa-mir-155 targets 26, comparable with established ID-miRs hsa-mir-191 and hsa-mir-212 which target 4 and 8 respectively (these miRNA are not located within a lncRNA locus). Across the four CAGE datasets 22 distinct miRNA are within a lncRNA locus assigned to a transient kinetic signature, thereby collectively targeting 129 IEGs (73.3% of known IEGs present in the TargetScan database) indicating a considerable

regulatory potential.

While these regulatory miRNA differ from those previously associated with the immediate-early response, the regulatory role appears to be the same. The fine-tuning of signalling pathways by miRNA has been previously described [12, 13, 42—44] and our analysis demonstrates that this phenomenon can be identified in high-resolution time course data. Our findings indicate that a hypothesised negative feedback mechanism for Atf3-Egr1 kinetics that involves the synthesis of miRNA [13] may also be a more general feature of the immediate-early response. The relationship between precursor and mature miRNA transcripts is compleX, however, our data suggests that downregulation of mature hsa-mir-320a is concurrent With increased transcription of the precursor transcript Which can be eXpected to restore the repression of its target mRNAs Which include DUSP4 and FOSLI at a later phase of the immediate-early response. Transcriptional activation and repression of miRNA precursors in the immediate-early response is readily apparent in the small intersection of the datasets for MCF7-HRG.

Discussion

We have shown that large numbers of transcripts can be categorised according to the kinetic signature their eXpression profiles fit best, if any, and the categories can then be eXplored using standard enrichment statistics. These methods have successfully identified known IEGs as well as many other transcripts displaying the known characteristics of IEGs. A Bayesian approach utilising the nested sampling algorithm [21, 45] is used to compare the fit of the models to the CAGE time series data, and in comparison with other methods, we find that more time courses can be assigned to kinetic signatures and with greater confidence. Model parameters also give the timing of potentially important events such as transitions in eXpression levels within the time course. Known IEGs are significantly enriched in CAGE clusters assigned to particular signatures (those involving early but transient upregulation within 240 minutes which we term the early peak response) and show other biological features of interest. In addition many relatively lowly eXpressed transcripts show eXpression profiles of interest, implicating the involvement of particular miRNA and lncRNAs in the immediate-early response.

Nucleotide binding genes have been proposed as components of the negative feedback architecture of the immediate-early response. We found these genes to be activated concurrently with IEGs in many cases, but, considering the time for completion of transcription where gene length is accounted for, the translation of these genes would peak later.

From consideration of DNaseI data, CAGE clusters for early peak genes and transcription factors tended to be located in accessible chromatin in MCF7 cells. The absence of a correlation between DNaseI counts and CAGE eXpression suggests that IEG promoters need not be located in the most accessible chromatin, rather a minimum level of accessibility is required and is not otherwise predictive of transcriptional activity. These results suggest that IEGs and early peak genes are primed prior to stimulus, with a permissive chromatin state maintained by transcription [7].

Such similarities and differences between the epigenetic regulation of lncRNA and mRNA have been reported previously in genome-wide data [17]. Many of these genes were activated rapidly after stimulus, and those assigned to the early peak signature originated from CAGE clusters in open chromatin. Further, regulated lncRNA are host to many miRNA targeting IEGs. Mature miRNAs previously found to be immediately downregulated in response to EGF [12] were found to have diverse responses in the MCF7-HRG dataset. However, the mRNA targets of a number of immediately downregulated mature miRNA in this data were found preferentially in early peak (transiently upregulated) protein-coding genes in the independent, but matched CAGE dataset thus supporting the use of kinetic signatures to detect meaningful temporal patterns (with respect to known miRNA targets).

Differences in the miRNAs that respond to stimulus in MCF7 cells in comparison with MCFIOA cells [12] may be due to the former being estrogen receptor positive, and to the different receptors in the ErbB receptor family that are stimulated. The MCF7-HRG data analysed here is the response to a ErbB3/4 ligand whereas the ID-miRs identified by Avraham et al[12] are responding to a ErbBl/EGFR ligand. Such differences have implications for the translational potential of miRNAs in cancer [47].

The model definition and selection methodology we present is not limited by eXpression level, for example by tests for differential eXpression, nor do we rely upon the arbitrary thresholding that is common in clustering analyses. Models are specified in advance, and selection is based on the integration of model parameters rather than from a point estimate of best values, an approach which can be sensitive to the optimisation procedure used. Gene sets assigned to the best fitting model can be tested for over-representa-tion of established gene and pathway annotations, and can be integrated with genome-wide data sets to test additional hypotheses.

Materials and Methods

Definition of kinetic signatures

The decay signature is parameterised by the basal expression (p 1), the maximal change in expression (p 2, being the difference between the expression at time 0 and p1) and the halflife (th). The linear model is parameterised by the expression at time 0 (p 1) and the change in expression (p 2) from which the rate of increase or decrease can be calculated. See Fig 1A for plots of these functions.

Instead, the rate is calculated from the switch time ts and the piecewise function specifies that the response reaches 90% of the expression change p2 at ts, see Eqs 1 and 2. This formulation ensures that the initial rise or fall in expression shows an exponential characteristic that is not limited to the almost linear characteristic that might otherwise result from a small value of the rate constant 6. In the peak model, expression increases to 90% of the change in expression parameter p2 at 1‘S from the basal level p1 (Eq 1). 6 is defined in terms of ts. In the dip model, expression drops by 90% of the change in expression p2 at tS from the initial level p1+p2 (Eq 2; 6 is again defined in terms of ts). In the decay model, expression starts at p1+p2 and drops exponentially at rate 6 towards p1. In this case 6 is calculated from the halflife th Which is an eXplicit parameter of the decay

All priors are selected uniformly from a range bounded by maximum and minimum values derived from the time course. A likelihood based on the ll-norm is defined by Eqs 4 and 5 [48]. Eq 4 defines the nor-malising constant fit as the expected value of the moduli of the difference between the replicate observations at time t (xt) and the value predicted by the kinetic model (yr). The product of the probabilities of the median observation at time t(9~ct) defines the likelihood function for a time series x of 111 samples (Eq 5). Maximisation of this likelihood minimises the sum of the moduli of the residuals (rather than their squares) on the basis that the testable information is restricted to the expected value of the modulus of the difference between theory and experiment. Should we know both the mean and variance, maximum entropy considerations would lead instead to the Gaussian distribution [48]. The inference of model parameters from CAGE data for the early peak and linear models using nested sampling and the 11 based likelihood is illustrated in Fig 1C. Time points where the replicates are most dissimilar contribute least to the likelihood as fit is larger—as is desirable.

CAGE clusters are assigned to one of the exponential kinetic signatures if log Z for that signature is greater than 10 times log Z for the linear model and log Z minus its standard deviation (sd) is greater than log Z plus the estimated sd for any other eXponential signature (nested sampling computes log Z for parameters mapped to O..1 and we used the resulting log Z for the unit cube for model comparison). Clusters are assigned to the linear signature if log Z is 10 times greater than log Z for all eXponential signatures. This decision making procedure is designed to minimise the incorrect assignment of eXponential signatures to essentially linear data, and has been validated using synthetic data. The theoretical basis of nested sampling is summarised in 81 Text.

Supporting Information

(PDF)

(PDF)

CAGE TPM values are plotted as circles (median value is filled), predictions of the kinetic signature models using parameter means are shown in blue and the vertical green lines indicate the mean t5 (or th in the case of the decay signature) and one standard deviation above and below. (PDF)

CAGE TPM values are plotted as circles (median value is filled), predictions of the kinetic signature models using parameter means are shown in blue and the vertical green lines indicate the mean ts and one standard deviation above and below. (PDF)

This analysis was performed With GOrilla [22] and REVIGO [23].

The distributions of ts for early peak, late peak, dip signatures and the halflife of the decay signature are shown in blue, the distributions of the subsets of known IEGs in each category are shown in red. The apparent bimodal distibution of t5 for peak models is an artefact of the different choices of prior range. When a peak model is run without the early or late restriction the distribution of switch times is not bimodal, however, fewer time courses are assigned to the

peak category.

(A) The timing of known IEGs and transcription factors is shown for IEGs (red) and TFs (blue) assigned to the early peak signature in each AoSMC data set. (B) The timing of non-coding genes assigned to the early peak category is shown for lncRNA (red) and all other ncRNA (blue) in MCF7 data and (C) in AoSMC data. Symbols indicate the 1‘5 (X axis) and are labelled with the gene name associated with the CAGE cluster.

CAGE TPM values are plotted as circles (median value is filled), predictions of the kinetic signature models using parameter means are shown in blue and the vertical green lines indicate the mean ts and one standard deviation above and below. (PDF)

(Top) Distributions of early peak DNaseI counts (blue) and non-early peak counts (black) for protein-coding CAGE clusters, and QQ plot. Early peak clusters have significantly higher counts. (Middle) Distributions of early peak DNaseI counts (blue) and non-early peak counts (black) for non-coding CAGE clusters, and QQ plot. There is no significant difference between the distributions. (Bottom) Distributions DNaseI counts for early peak lncRNA (blue) and all other counts (black) for non-coding CAGE clusters, and QQ plot. Early peak lncRNA clusters have significantly higher counts. (PDF)

Data is presented for the host lncRNA of hsa-mir-155 (MIR155HG ENSG00000234883) in AoSMC-FGFZ, AoSMC-Illb and MCF7-HRG data sets (data for MCF7-EGF does not pass quality controls). CAGE TPM values are plotted as circles (median value is filled), predictions of the kinetic signature models using parameter means are shown in blue and the vertical green lines indicate the mean ts and one standard deviation above and below. (PDF)

The data and kinetic signatures are presented for two mature miRNA assigned to the decay signature and for two miRNA assigned to the dip signature. Expression values are plotted as circles (median value is filled), predictions of the model using parameter means are shown in blue and the vertical green lines indicate the mean th (or ts) and one standard deviation above and below. (PDF)

Eleven ID-miRs were present in the small RNA sequencing data With expression above the minimum threshold. Expression values are plotted as circles (median value is filled), and the dashed purple lines indicate the best-fitting kinetic signature. None of the ID-miR assignments passed the standard statistical criteria, hence these assignments are not significant (NS) and plotted for information only. It is apparent that hsa-mir- 155 increases linearly, and that hsa-mir- 191 peaks early in the time course. A number of ID-miRs show the expected immediate downregulation including hsa-mir-212 and hsa-mir-320a.

Median CAGE expression (black circles) of precursor miRNA and median mature miRNA expression

Lines are are a spline fitted to the data. (PDF)

Gene Ontology process term enrichment in MCF7-HRG cells. (PDF) 81 File. Archive of tab-delimited files containing the kinetic signature assignments to CAGE clusters and associated model parameters for all time courses. (GZ)

Acknowledgments

The core members of FANTOM5 phase 2 were: Alistair R.R. Forrest, Albin Sandelin, Carsten O. Daub, Christine Wells, David A. Hume, Erik Arner, Hideya Kawaji, Kim M Summers, Kristoffer Vit-ting-Seerup, Piero Carninci, Robin Andersson, Yoshihide Hayashizaki. Ms Noriko Yumoto (RIKEN Center for Integrative Medical Sciences) prepared MCF7 samples for CAGE sequencing under the supervision of MO. AoSMC cultures were prepared for CAGE sequencing by Margaret Patrikakis under the supervision of LK. Finn Drablos (Department of Cancer Research and Molecular Medicine, Laboratory Center, Erling Skjalgsons gt. 1, Faculty of Medicine, Norwegian University of Science and Technology, N-7006 Trondheim, Norway) curated the list of IEGs within the FANTOM5 consortium.

Author Contributions

Performed the experiments: SM AMNA. Analyzed the data: SA. Wrote the paper: SA CAS. Contributed to the manuscript: SM MOH EA AMNA LMK. Managed The FANTOM5 project: COD ARRF PC YH. Prepared CAGE libraries: MI. Preprocessed CAGE data: HK TL. Performed quality control of the CAGE data: EA.

Topics

time course

Appears in 23 sentences as: time course (18) time courses (9)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. Kinetic signatures serve as prototypical patterns reflecting changes in regulation, and are used here as a means to categorise time course responses for each transcript present.
    Page 4, “Results”
  2. CAGE clusters assigned to approximately 200 known IEGs showed significantly elevated expression at the start of the time course , hence the importance of including the p1 parameter in the kinetic signatures (see Fig 1B).
    Page 5, “Results”
  3. An example of fitting early peak and linear models to an EGR1 time course is presented in Fig 1C.
    Page 5, “Results”
  4. This pattern was less apparent in the MCF7-HRG cell line where the proportion of known IEGs found in an interval exceeded the overall average towards the end of the time course .
    Page 9, “Kinetics and chromatin features underlying IEG induction”
  5. The transcriptional repressor NAB2 peaked relatively late in both MCF7 time courses .
    Page 9, “Kinetics and chromatin features underlying IEG induction”
  6. Nucleotide binding genes found to peak within 240 min in both MCF7 time courses included the transcription factor RUNX1 and three IEGs: TRIB1, SIK1 and GEM.
    Page 9, “Kinetics and chromatin features underlying IEG induction”
  7. A lower threshold was used for the initial data selection: A minimum sum of 3 TPM normalised by relative log expression (RLE) over the time course was used as a threshold to increase the number of time courses from the more conservative 10 TPM criteria used for protein coding genes.
    Page 12, “Discovery of non-coding RNA genes active in the immediate-early response”
  8. DNaseI hypersensitivity data for MCF7 cells [37, 38] were determined for 200 bp windows centered at the midpoint of each protein-coding and non-coding MCF7 time course CAGE cluster.
    Page 14, “Discovery of non-coding RNA genes active in the immediate-early response”
  9. Clusters associated with transcription factors were also in more accessible regions (p = 0.018), but, surprisingly, clusters assigned to known IEGs or nucleotide binding genes did not differ significantly from the reference set in either MCF7 time course (p > 0.08 by Wilcoxon rank sum test).
    Page 14, “Discovery of non-coding RNA genes active in the immediate-early response”
  10. We then explored the relationship between DNaseI counts and CAGE expression at time 0, maximum CAGE expression in the time course, and maximal fold change in CAGE expression across the time course for both MCF7 data sets.
    Page 14, “Discovery of non-coding RNA genes active in the immediate-early response”
  11. Observing that the transcription of the host gene for hsa-mir-155 (an ID-miR) showed clear peaks in the time courses of AoSMC-FGF2, AoSMC-IL1b and MCF7-HRG cells (812 Fig), and that the precursor transcript of hsa-mir-21 showed early or late peaks in expression in three of the CAGE time course datasets we consider, we sought to investigate the relationship between miRNA-mediated repression and transcriptional attenuation, and to test whether or not kinetic signatures can be used to find correspondences between time course datasets.
    Page 14, “Discovery of non-coding RNA genes active in the immediate-early response”

See all papers in April 2015 that mention time course.

See all papers in PLOS Comp. Biol. that mention time course.

Back to top.

time series

Appears in 19 sentences as: Time series (1) time series (19)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. Using a large collection of densely-sampled time series expression data we have examined the induction of the immediate-early response in unparalleled detail, across cell types and stimuli.
    Page 1, “Abstract”
  2. We exploit cap analysis of gene expression (CAGE) time series datasets to directly measure promoter activities overtime.
    Page 1, “Abstract”
  3. Using a novel analysis method for time series data we identify transcripts with expression patterns that closely resemble the dynamics of known immediate-early genes (IEGs) and this enables a comprehensive comparative study of these genes and their chromatin state.
    Page 1, “Abstract”
  4. In particular, the CAGE time series datasets obtained for MCF-7 cells and human primary aortic smooth muscle cells are a unique resource for the study of the temporal response of stimulated human cells [19].
    Page 3, “Introduction”
  5. Using these unique datasets, and a novel approach to time series analysis, we identify a comprehensive set of transcripts whose expression patterns are altered in response to a stimulus genome-wide, including all ncRNA transcripts present.
    Page 3, “Introduction”
  6. We focused on four particular time series datasets: human aortic smooth muscle cells (AoSMC) treated with FGF2 and with IL-lfi (9 time points from 0 to 360 min; 3 replicates per treatment; IL-lfi will be referred to as Ile hereafter), as well as human MCF7 breast cancer cells treated with EGF and HRG (16 time points from 0 to 480 min; 3 replicates per treatment).
    Page 5, “Results”
  7. This led to exclusion of five libraries from the AoSMC-FGF2 time series , three from AoSMC-IL1b and one from MCF7-EGF.
    Page 5, “Results”
  8. For the analysis of time series in this context, we distinguished early peaks from late peaks by bounding the prior range for the tS parameter by 1-240 minutes (the first half of the time series ), and by 240 minutes-end time (the second half) of the experiment respectively.
    Page 5, “Results”
  9. The fit between kinetic signatures and the time series CAGE data was assessed using the nested sampling algorithm to calculate the log of Bayesian evidence (also known as the marginal likelihood), log Z, using existing algorithms [21].
    Page 5, “Results”
  10. The likelihood function was derived on the basis of maximum entropy and is applicable to any time series dataset with replicated data.
    Page 5, “Results”
  11. The percentage of CAGE time series that could be reliably annotated with a kinetic signature varied from 21%—39% across the cell types and protein coding or RNA biotypes.
    Page 6, “Core regulatory components in the immediate-early response”

See all papers in April 2015 that mention time series.

See all papers in PLOS Comp. Biol. that mention time series.

Back to top.

transcription factors

Appears in 15 sentences as: transcription factor (3) transcription factors (12)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. Many immediate-early genes (IEGs) encode transcription factors which regulate secondary response genes (SRGs) [6].
    Page 2, “Introduction”
  2. It is believed that delayed IEGs can be identified by their increased length, greater number of exons and lack of transcription factor activity in addition to the delayed timing of their expression in comparison with typical IEGs [6].
    Page 2, “Introduction”
  3. On the attenuation of the immediate-early response, detailed kinetic modelling of the transient upregulation of the Atf3 transcription factor (an inhibitor of Egr1) has concluded that, following induction, the mechanism whereby Atf3 is rapidly repressed is likely to involve newly-synthesised miRNA [13].
    Page 3, “Introduction”
  4. Known IEGs IUN and TRIBl were among the additional seven IEGs and five transcription factors that had this response in three of the four data sets, see S4 Fig for the numbers of Ensembl genes in the intersection of the kinetic signature categories across all data sets.
    Page 6, “Core regulatory components in the immediate-early response”
  5. Only three of these genes were transcription factors and six were IEGs therefore these sets were essentially disjoint.
    Page 8, “Kinetics and chromatin features underlying IEG induction”
  6. The timing of IEG induction and that of known transcription factors (TFs) is contrasted in Fig 2C where a relatively consistent pattern of IEG activation beginning with FOS, DUSP1 and IER2, and continuing with IUN, C-MYC, EGR1 and DUSP2 can be seen.
    Page 9, “Kinetics and chromatin features underlying IEG induction”
  7. A number of non-IEG transcription factors were also activated: TBX2 activates early and RUNX1 late in the timelines.
    Page 9, “Kinetics and chromatin features underlying IEG induction”
  8. Targets of the MAPK cascade in Fig 2C included the transcription factors ETV3 and KLF4 [30] as well as IEGs [UN and PCS [26].
    Page 9, “Kinetics and chromatin features underlying IEG induction”
  9. Nucleotide binding genes found to peak within 240 min in both MCF7 time courses included the transcription factor RUNX1 and three IEGs: TRIB1, SIK1 and GEM.
    Page 9, “Kinetics and chromatin features underlying IEG induction”
  10. Clusters associated with transcription factors were also in more accessible regions (p = 0.018), but, surprisingly, clusters assigned to known IEGs or nucleotide binding genes did not differ significantly from the reference set in either MCF7 time course (p > 0.08 by Wilcoxon rank sum test).
    Page 14, “Discovery of non-coding RNA genes active in the immediate-early response”
  11. In contrast, enhancer activity for transcription factors was 30% greater than for non-TFs (901 genes; p = 2.5e-14).
    Page 14, “Discovery of non-coding RNA genes active in the immediate-early response”

See all papers in April 2015 that mention transcription factors.

See all papers in PLOS Comp. Biol. that mention transcription factors.

Back to top.

mRNA

Appears in 12 sentences as: mRNA (15)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. Studies of IEG induction show distinct differences between the kinetics of pre-mRNA and mature mRNA which are particularly evident for delayed IEGs where the mature mRNA may peak up to 3 hours later than the precursor [6].
    Page 2, “Introduction”
  2. A transient overshoot in pre-mRNA production has been proposed as a strategy to shape the timing and magnitude of response in the face of the slow mRNA degradation kinetics that would otherwise determine the kinetics [9].
    Page 3, “Introduction”
  3. Recent studies have implicated splicing as an important factor controlling IEG expression, such that the F08 locus can remain transcriptionally active long after spliced mRNA production has ceased [11].
    Page 3, “Introduction”
  4. Genome-wide characterisation of histone modifications H3K4me3 and H3K27me3 at lncRNA has demonstrated common features with mRNA , whereas patterns of DNA methylation differ [17].
    Page 3, “Introduction”
  5. As CAGE data is obtained from the 5’ end of capped mRNA transcripts, it is expected to reflect the initial burst of overproduction of mRNA at promoters better than other expression data, and hence is well suited to explore the immediate-early response.
    Page 3, “Introduction”
  6. These patterns were intended to capture mRNA transcription in response to a stimulus.
    Page 4, “Results”
  7. Such eXponential kinetics are characteristic of formalised systems biology models (comparable With observed and modelled mRNA and pre-mRNA eXpression in [4, 9]), and may reflect changes in both transcription and degradation rates over time [20].
    Page 4, “Results”
  8. This may indicate that the (pre) mRNA kinetics of switch-ing-on are faster than switch-off kinetics as might be expected due to the latter being dominated by relatively slow mRNA degradation rates in many cases [9].
    Page 8, “Kinetics and chromatin features underlying IEG induction”
  9. Many mRNA are repressed by more than one ID-miR, for example, EGR1 is targeted by hsa-mir- 191 and hsa-mir-212.
    Page 14, “Discovery of non-coding RNA genes active in the immediate-early response”
  10. Reasoning that miRNA-mediated repression will be reflected in the CAGE signals, either by direct action on mRNA or indirectly through transcriptional inactivation processes, we sought to establish a connection between the targets of mature miRNA that are assigned to the dip signature, and protein-coding genes with CAGE clusters assigned to the early peak signature in MCF7 cells stimulated with HRG.
    Page 15, “Discovery of non-coding RNA genes active in the immediate-early response”
  11. Such similarities and differences between the epigenetic regulation of lncRNA and mRNA have been reported previously in genome-wide data [17].
    Page 17, “Discussion”

See all papers in April 2015 that mention mRNA.

See all papers in PLOS Comp. Biol. that mention mRNA.

Back to top.

transcriptional

Appears in 10 sentences as: Transcriptional (1) transcriptional (9)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. Surprisingly, these data suggest that the earliest transcriptional responses often involve promoters generating non-coding RNAs, many of which are produced in advance of canonical protein-coding IEGs.
    Page 1, “Abstract”
  2. We characterise IEGs in a genome-wide sequencing dataset that captures their transcriptional response over time.
    Page 2, “Author Summary”
  3. This class of transcripts is currently understudied, but lncRNAs are differentially expressed during differentiation, are preferentially localised in chromatin and have been proposed to ‘f1ne-tune’ cell fate via their roles in transcriptional regulation [14—16].
    Page 3, “Introduction”
  4. It is also worth noting that significant downregulation did not occur until the second hour, and this may require both early induction of transcriptional repressors and the RNA degradation proteins BTG2 and ZFP36 (tristetraprolin) [29].
    Page 9, “Kinetics and chromatin features underlying IEG induction”
  5. The transcriptional repressor NAB2 peaked relatively late in both MCF7 time courses.
    Page 9, “Kinetics and chromatin features underlying IEG induction”
  6. The time at which short IEGs reach their transcriptional peak was up to three hours after the stimulus suggesting their activation rates coordinate their eXpression with diverse processes and pathways: late-acting IEGs are not delayed due to gene length.
    Page 11, “Kinetics and chromatin features underlying IEG induction”
  7. Observing that the transcription of the host gene for hsa-mir-155 (an ID-miR) showed clear peaks in the time courses of AoSMC-FGF2, AoSMC-IL1b and MCF7-HRG cells (812 Fig), and that the precursor transcript of hsa-mir-21 showed early or late peaks in expression in three of the CAGE time course datasets we consider, we sought to investigate the relationship between miRNA-mediated repression and transcriptional attenuation, and to test whether or not kinetic signatures can be used to find correspondences between time course datasets.
    Page 14, “Discovery of non-coding RNA genes active in the immediate-early response”
  8. Reasoning that miRNA-mediated repression will be reflected in the CAGE signals, either by direct action on mRNA or indirectly through transcriptional inactivation processes, we sought to establish a connection between the targets of mature miRNA that are assigned to the dip signature, and protein-coding genes with CAGE clusters assigned to the early peak signature in MCF7 cells stimulated with HRG.
    Page 15, “Discovery of non-coding RNA genes active in the immediate-early response”
  9. Transcriptional activation and repression of miRNA precursors in the immediate-early response is readily apparent in the small intersection of the datasets for MCF7-HRG.
    Page 17, “regulatory potential.”
  10. The absence of a correlation between DNaseI counts and CAGE eXpression suggests that IEG promoters need not be located in the most accessible chromatin, rather a minimum level of accessibility is required and is not otherwise predictive of transcriptional activity.
    Page 17, “Discussion”

See all papers in April 2015 that mention transcriptional.

See all papers in PLOS Comp. Biol. that mention transcriptional.

Back to top.

genome-wide

Appears in 9 sentences as: Genome-wide (2) genome-Wide (1) genome-wide (6)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. We characterise IEGs in a genome-wide sequencing dataset that captures their transcriptional response over time.
    Page 2, “Author Summary”
  2. The transcription of primary miRNA transcripts (pri-miRNAs), and the subsequent role of the mature transcripts in the immediate-early response is unexplored in genome-wide data.
    Page 3, “Introduction”
  3. Genome-wide characterisation of histone modifications H3K4me3 and H3K27me3 at lncRNA has demonstrated common features with mRNA, whereas patterns of DNA methylation differ [17].
    Page 3, “Introduction”
  4. Using these unique datasets, and a novel approach to time series analysis, we identify a comprehensive set of transcripts whose expression patterns are altered in response to a stimulus genome-wide , including all ncRNA transcripts present.
    Page 3, “Introduction”
  5. The genome-Wide CAGE data considered here necessarily included transcripts Whose functions are unknown thus we began by hypothesising the possible kinetics they may display, rather than by constructing a detailed, interconnected systems model.
    Page 4, “Results”
  6. Immediate early genes are typically shorter in length than the genome-wide average [6].
    Page 9, “Kinetics and chromatin features underlying IEG induction”
  7. Genome-wide analysis of enhancer activity was then performed.
    Page 14, “Discovery of non-coding RNA genes active in the immediate-early response”
  8. Such similarities and differences between the epigenetic regulation of lncRNA and mRNA have been reported previously in genome-wide data [17].
    Page 17, “Discussion”
  9. Gene sets assigned to the best fitting model can be tested for over-representa-tion of established gene and pathway annotations, and can be integrated with genome-wide data sets to test additional hypotheses.
    Page 18, “Discussion”

See all papers in April 2015 that mention genome-wide.

See all papers in PLOS Comp. Biol. that mention genome-wide.

Back to top.

upregulated

Appears in 8 sentences as: upregulated (4) upregulates (1) upregulation (3)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. On the attenuation of the immediate-early response, detailed kinetic modelling of the transient upregulation of the Atf3 transcription factor (an inhibitor of Egr1) has concluded that, following induction, the mechanism whereby Atf3 is rapidly repressed is likely to involve newly-synthesised miRNA [13].
    Page 3, “Introduction”
  2. Although immediate early genes are typically rapidly upregulated , they may also be downregulated as is the case for JUN in AoSMC-FGFZ.
    Page 6, “Core regulatory components in the immediate-early response”
  3. Significant upregulation of NAB2, TRIB1 and GEM was previously found in MCF7 cells following EGF and HRG treatment (see 81 Table in [3]) These genes may play a role in the attenuation of the immediate-early response in MCF7 cells.
    Page 9, “Kinetics and chromatin features underlying IEG induction”
  4. It has been previously demonstrated that in response to EGF stimulation a set of 23 mature miRNA show a rapid reduction in expression that upregulates a large number of target mRNAs in non-tumori-genic MCF-10A breast epithelial cells [12].
    Page 14, “Discovery of non-coding RNA genes active in the immediate-early response”
  5. In contrast, mature hsa-mir-21 was previously found to be upregulated on EGF stimulation [12, 35, 40].
    Page 14, “Discovery of non-coding RNA genes active in the immediate-early response”
  6. We also found MIR99AHG (host gene for hsa-mir-99a, hsa-let-7c and hsa-mir-125b2) and two other lncRNA whose locus contains miRNA to be similarly transiently upregulated in two or more datasets.
    Page 16, “Discovery of non-coding RNA genes active in the immediate-early response”
  7. Known IEGs are significantly enriched in CAGE clusters assigned to particular signatures (those involving early but transient upregulation within 240 minutes which we term the early peak response) and show other biological features of interest.
    Page 17, “Discussion”
  8. However, the mRNA targets of a number of immediately downregulated mature miRNA in this data were found preferentially in early peak (transiently upregulated ) protein-coding genes in the independent, but matched CAGE dataset thus supporting the use of kinetic signatures to detect meaningful temporal patterns (with respect to known miRNA targets).
    Page 18, “Discussion”

See all papers in April 2015 that mention upregulated.

See all papers in PLOS Comp. Biol. that mention upregulated.

Back to top.

standard deviation

Appears in 8 sentences as: standard deviation (6) standard deviations (2)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. A cluster was assigned to a ‘no decision’ category if the values of log Z (and the associated standard deviations ) computed for each model did not permit a clear assignment.
    Page 5, “Results”
  2. Bayesian evidence values and model parameter estimates (and their standard deviations ) are computed using nested sampling for all signatures for each time series.
    Page 19, “Definition of kinetic signatures”
  3. CAGE clusters are assigned to one of the exponential kinetic signatures if log Z for that signature is greater than 10 times log Z for the linear model and log Z minus its standard deviation (sd) is greater than log Z plus the estimated sd for any other eXponential signature (nested sampling computes log Z for parameters mapped to O..1 and we used the resulting log Z for the unit cube for model comparison).
    Page 19, “Definition of kinetic signatures”
  4. CAGE TPM values are plotted as circles (median value is filled), predictions of the kinetic signature models using parameter means are shown in blue and the vertical green lines indicate the mean t5 (or th in the case of the decay signature) and one standard deviation above and below.
    Page 20, “Supporting Information”
  5. CAGE TPM values are plotted as circles (median value is filled), predictions of the kinetic signature models using parameter means are shown in blue and the vertical green lines indicate the mean ts and one standard deviation above and below.
    Page 20, “Supporting Information”
  6. CAGE TPM values are plotted as circles (median value is filled), predictions of the kinetic signature models using parameter means are shown in blue and the vertical green lines indicate the mean ts and one standard deviation above and below.
    Page 21, “peak category.”
  7. CAGE TPM values are plotted as circles (median value is filled), predictions of the kinetic signature models using parameter means are shown in blue and the vertical green lines indicate the mean ts and one standard deviation above and below.
    Page 21, “peak category.”
  8. Expression values are plotted as circles (median value is filled), predictions of the model using parameter means are shown in blue and the vertical green lines indicate the mean th (or ts) and one standard deviation above and below.
    Page 21, “peak category.”

See all papers in April 2015 that mention standard deviation.

See all papers in PLOS Comp. Biol. that mention standard deviation.

Back to top.

model parameters

Appears in 8 sentences as: model parameter (1) Model parameters (1) model parameters (6)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. Further details of the specification of priors for model parameters , and model selection are given in Materials and methods.
    Page 5, “Results”
  2. Lists of the genes assigned to kinetic signatures and the corresponding model parameters are provided in Supporting File 1.
    Page 6, “Core regulatory components in the immediate-early response”
  3. Further exploration of model parameters yielded other insights.
    Page 9, “Kinetics and chromatin features underlying IEG induction”
  4. Model parameters also give the timing of potentially important events such as transitions in eXpression levels within the time course.
    Page 17, “Discussion”
  5. Models are specified in advance, and selection is based on the integration of model parameters rather than from a point estimate of best values, an approach which can be sensitive to the optimisation procedure used.
    Page 18, “Discussion”
  6. The inference of model parameters from CAGE data for the early peak and linear models using nested sampling and the 11 based likelihood is illustrated in Fig 1C.
    Page 19, “Definition of kinetic signatures”
  7. Bayesian evidence values and model parameter estimates (and their standard deviations) are computed using nested sampling for all signatures for each time series.
    Page 19, “Definition of kinetic signatures”
  8. CAGE clusters and associated model parameters for all time courses.
    Page 22, “peak category.”

See all papers in April 2015 that mention model parameters.

See all papers in PLOS Comp. Biol. that mention model parameters.

Back to top.

de novo

Appears in 5 sentences as: de novo (5)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. IEGs are known to be capable of induction without de novo protein synthesis.
    Page 1, “Abstract”
  2. Immediate-early (or primary response) genes are induced in response to a stimulus without the requirement of de novo protein synthesis [1].
    Page 2, “Introduction”
  3. Necessarily, there is a delay in the expression of SRGs since, unlike IEGs, they require de novo protein synthesis.
    Page 2, “Introduction”
  4. The attenuation of the initial response of delayed IEGs to EGF was also shown to depend on negative feedback through de novo transcription in HeLa cells [10], but it is unknown whether negative feedback plays roles in other cell types or under other stimuli.
    Page 3, “Introduction”
  5. However, to qualify as an IEG these genes must be expressed without de novo protein synthesis.
    Page 6, “The early peak signature is enriched for lEGs and signalling pathways”

See all papers in April 2015 that mention de novo.

See all papers in PLOS Comp. Biol. that mention de novo.

Back to top.

gene expression

Appears in 5 sentences as: gene expression (5)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. We exploit cap analysis of gene expression (CAGE) time series datasets to directly measure promoter activities overtime.
    Page 1, “Abstract”
  2. The FANTOM5 project has recently produced the most comprehensive expression atlas for human and mouse cells, based upon cap analysis of gene expression (CAGE) data [18].
    Page 3, “Introduction”
  3. These cues are sensed by these cells through changes in imme-diate-early gene expression , and can lead to increased proliferation and migration.
    Page 5, “Results”
  4. Terms relevant to the immediate-early response included regulation of gene expression , regulation of transcription from RNA polymerase II promoter, regulation of RNA metabolic process and regulation of metabolic process.
    Page 7, “The early peak signature is enriched for lEGs and signalling pathways”
  5. The timing of immediate early and nucleotide binding gene expression is shown in Fig 2A and 2B where it can be seen that in AoSMC-FGFZ, AoSM-C-Ile and MCF7-EGF data the largest proportion of known IEGs is found in the 30-90 min interval when ts values are binned in 30 min intervals (the proportion of clusters annotated to known IEGs is expressed as a percentage of all clusters within each 30 min period according to 1‘5).
    Page 8, “Kinetics and chromatin features underlying IEG induction”

See all papers in April 2015 that mention gene expression.

See all papers in PLOS Comp. Biol. that mention gene expression.

Back to top.

linear model

Appears in 5 sentences as: linear model (3) linear models (2)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. CAGE clusters were assigned to one of the exponential kinetic signatures or to the linear model according to the value of log Z.
    Page 5, “Results”
  2. An example of fitting early peak and linear models to an EGR1 time course is presented in Fig 1C.
    Page 5, “Results”
  3. The linear model is parameterised by the expression at time 0 (p 1) and the change in expression (p 2) from which the rate of increase or decrease can be calculated.
    Page 18, “Definition of kinetic signatures”
  4. The inference of model parameters from CAGE data for the early peak and linear models using nested sampling and the 11 based likelihood is illustrated in Fig 1C.
    Page 19, “Definition of kinetic signatures”
  5. CAGE clusters are assigned to one of the exponential kinetic signatures if log Z for that signature is greater than 10 times log Z for the linear model and log Z minus its standard deviation (sd) is greater than log Z plus the estimated sd for any other eXponential signature (nested sampling computes log Z for parameters mapped to O..1 and we used the resulting log Z for the unit cube for model comparison).
    Page 19, “Definition of kinetic signatures”

See all papers in April 2015 that mention linear model.

See all papers in PLOS Comp. Biol. that mention linear model.

Back to top.

MAPK

Appears in 5 sentences as: MAPK (5)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. The well-studied mitogen-activated kinase ( MAPK ), and in particular extracellular signal-reg-ulated kinase (ERK) pathways, play important roles in signal transduction in the immediate-early response as well as many other cellular responses [1].
    Page 2, “Introduction”
  2. RTKs can stimulate cells through either the MAPK pathway, the AKT/PI3K pathway, or a combination of the two [25].
    Page 7, “The early peak signature is enriched for lEGs and signalling pathways”
  3. The promoters of IEGs [UN and F08 contain a number of elements that are targets for MAPK signalling [26].
    Page 7, “The early peak signature is enriched for lEGs and signalling pathways”
  4. Pathway analysis indicates that kinetic signatures identify the transcription of genes linked to the RTK, AKT, MAPK and NF-KB pathways.
    Page 7, “The early peak signature is enriched for lEGs and signalling pathways”
  5. Targets of the MAPK cascade in Fig 2C included the transcription factors ETV3 and KLF4 [30] as well as IEGs [UN and PCS [26].
    Page 9, “Kinetics and chromatin features underlying IEG induction”

See all papers in April 2015 that mention MAPK.

See all papers in PLOS Comp. Biol. that mention MAPK.

Back to top.

signaling pathway

Appears in 5 sentences as: signaling pathway (5)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. TGF-beta signaling pathway
    Page 8, “The early peak signature is enriched for lEGs and signalling pathways”
  2. Toll receptor signaling pathway
    Page 8, “The early peak signature is enriched for lEGs and signalling pathways”
  3. Cadherin signaling pathway
    Page 8, “The early peak signature is enriched for lEGs and signalling pathways”
  4. Apoptosis signaling pathway
    Page 8, “The early peak signature is enriched for lEGs and signalling pathways”
  5. Notch signaling pathway
    Page 8, “The early peak signature is enriched for lEGs and signalling pathways”

See all papers in April 2015 that mention signaling pathway.

See all papers in PLOS Comp. Biol. that mention signaling pathway.

Back to top.

Wilcoxon

Appears in 4 sentences as: Wilcoxon (4)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. [34], we found IEGs to be associated with pro-moter-proximal pausing (that is, with a greater travelling ratio than non-IEGs; p = 1.2e-9 by Wilcoxon rank sum test on 114 IEGs compared with 8438 non-IEGs), and that the larger set of early peak genes was also associated with pausing (p = 1.4e- 14; 1421 early peak genes compared with 7131 reference genes).
    Page 12, “Kinetics and chromatin features underlying IEG induction”
  2. Protein-coding clusters assigned to the early peak category had significantly more reads than the remaining clusters (14% increase in mean read count, p = 2.1e-6 Wilcoxon rank sum test).
    Page 14, “Discovery of non-coding RNA genes active in the immediate-early response”
  3. Clusters associated with transcription factors were also in more accessible regions (p = 0.018), but, surprisingly, clusters assigned to known IEGs or nucleotide binding genes did not differ significantly from the reference set in either MCF7 time course (p > 0.08 by Wilcoxon rank sum test).
    Page 14, “Discovery of non-coding RNA genes active in the immediate-early response”
  4. However, early peak lncRNA had significantly greater DNaseI counts than the remaining non-coding clusters (40% increase in mean read count, p = 1.3e-8 Wilcoxon rank sum test).
    Page 14, “Discovery of non-coding RNA genes active in the immediate-early response”

See all papers in April 2015 that mention Wilcoxon.

See all papers in PLOS Comp. Biol. that mention Wilcoxon.

Back to top.

cancer cell

Appears in 4 sentences as: cancer cell (3) cancer cells (1)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. We also explore the function of non-coding RNAs in the attenuation of the immediate early response in a small RNA sequencing dataset matched to the CAGE data: We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line.
    Page 1, “Abstract”
  2. We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line.
    Page 2, “Author Summary”
  3. The activation of ErbB receptors by epidermal growth factor (EGF) or heregulin (HRG) in the MCF7 breast cancer cell line exemplifies the impact of such transient or sustained signalling on cell fate [3, 4].
    Page 2, “Introduction”
  4. We focused on four particular time series datasets: human aortic smooth muscle cells (AoSMC) treated with FGF2 and with IL-lfi (9 time points from 0 to 360 min; 3 replicates per treatment; IL-lfi will be referred to as Ile hereafter), as well as human MCF7 breast cancer cells treated with EGF and HRG (16 time points from 0 to 480 min; 3 replicates per treatment).
    Page 5, “Results”

See all papers in April 2015 that mention cancer cell.

See all papers in PLOS Comp. Biol. that mention cancer cell.

Back to top.

rate constant

Appears in 4 sentences as: rate constant (4)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. The peak and dip signature functions require a rate constant 6 which is not an explicit parameter of the model.
    Page 5, “Results”
  2. This formulation ensures that the initial rise in expression shows an exponential characteristic that is not limited to the almost linear initial change in expression that might otherwise result from a small value of the rate constant 6.
    Page 5, “Results”
  3. The peak and dip signature functions require a rate constant 6 which is not an explicit parameter of the model.
    Page 18, “Definition of kinetic signatures”
  4. This formulation ensures that the initial rise or fall in expression shows an exponential characteristic that is not limited to the almost linear characteristic that might otherwise result from a small value of the rate constant 6.
    Page 18, “Definition of kinetic signatures”

See all papers in April 2015 that mention rate constant.

See all papers in PLOS Comp. Biol. that mention rate constant.

Back to top.

expression data

Appears in 4 sentences as: eXpression data (1) expression data (3)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. Using a large collection of densely-sampled time series expression data we have examined the induction of the immediate-early response in unparalleled detail, across cell types and stimuli.
    Page 1, “Abstract”
  2. As CAGE data is obtained from the 5’ end of capped mRNA transcripts, it is expected to reflect the initial burst of overproduction of mRNA at promoters better than other expression data , and hence is well suited to explore the immediate-early response.
    Page 3, “Introduction”
  3. CAGE and miRNA expression data for these transcripts are presented together in Fig 5B where a lag between the rise in the CAGE signal and the recovery in the mature miRNA level for hsa-mir-320a can be seen, whereas the CAGE peak appears concurrent with the rise in mature hsa-mir-155 (none of these profiles satisfied our statistical criteria but significant changes occur between selected time points).
    Page 15, “Discovery of non-coding RNA genes active in the immediate-early response”
  4. anRNA are typically eXpressed at very low levels (NEATl and MALATI being notable eXceptions), as are precursor miRNA, making their analysis problematic for methods that require more strictly thresholded eXpression data .
    Page 18, “Discussion”

See all papers in April 2015 that mention expression data.

See all papers in PLOS Comp. Biol. that mention expression data.

Back to top.

cell line

Appears in 4 sentences as: cell line (4)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. We also explore the function of non-coding RNAs in the attenuation of the immediate early response in a small RNA sequencing dataset matched to the CAGE data: We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line .
    Page 1, “Abstract”
  2. We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line .
    Page 2, “Author Summary”
  3. The activation of ErbB receptors by epidermal growth factor (EGF) or heregulin (HRG) in the MCF7 breast cancer cell line exemplifies the impact of such transient or sustained signalling on cell fate [3, 4].
    Page 2, “Introduction”
  4. This pattern was less apparent in the MCF7-HRG cell line where the proportion of known IEGs found in an interval exceeded the overall average towards the end of the time course.
    Page 9, “Kinetics and chromatin features underlying IEG induction”

See all papers in April 2015 that mention cell line.

See all papers in PLOS Comp. Biol. that mention cell line.

Back to top.

cell fate

Appears in 4 sentences as: cell fate (3) cell fates (1)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. The immediate-early response mediates cell fate in response to a variety of extracellular stimuli and is dysregulated in many cancers.
    Page 1, “Abstract”
  2. The source and duration of the induction signal can determine alternative cell fates , for example, transient signalling may result in cell proliferation, whereas sustained signalling gives rise to cell differentiation [2].
    Page 2, “Introduction”
  3. The activation of ErbB receptors by epidermal growth factor (EGF) or heregulin (HRG) in the MCF7 breast cancer cell line exemplifies the impact of such transient or sustained signalling on cell fate [3, 4].
    Page 2, “Introduction”
  4. This class of transcripts is currently understudied, but lncRNAs are differentially expressed during differentiation, are preferentially localised in chromatin and have been proposed to ‘f1ne-tune’ cell fate via their roles in transcriptional regulation [14—16].
    Page 3, “Introduction”

See all papers in April 2015 that mention cell fate.

See all papers in PLOS Comp. Biol. that mention cell fate.

Back to top.

sequencing data

Appears in 3 sentences as: sequencing data (3)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. Of the four established ID-miRs for which we have CAGE data for the precursor, only two (hsa-mir-320a and hsa-mir-155) satisfied the expression criterion in the small RNA sequencing data .
    Page 15, “Discovery of non-coding RNA genes active in the immediate-early response”
  2. Mature miRNA expression in MCF7 cells in response to HRG in the small RNA sequencing data .
    Page 21, “peak category.”
  3. Eleven ID-miRs were present in the small RNA sequencing data With expression above the minimum threshold.
    Page 21, “peak category.”

See all papers in April 2015 that mention sequencing data.

See all papers in PLOS Comp. Biol. that mention sequencing data.

Back to top.

HeLa cells

Appears in 3 sentences as: HeLa cells (3)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. The attenuation of the initial response of delayed IEGs to EGF was also shown to depend on negative feedback through de novo transcription in HeLa cells [10], but it is unknown whether negative feedback plays roles in other cell types or under other stimuli.
    Page 3, “Introduction”
  2. This set of delayed early genes has been shown to be activated in waves following FOS, JUN and EGRl expression in HeLa cells [10].
    Page 8, “Kinetics and chromatin features underlying IEG induction”
  3. This is consistent with reports that NAB2 represses EGR1 and thereby attenuates the immediate-early response in HeLa cells stimulated with EGF [10].
    Page 9, “Kinetics and chromatin features underlying IEG induction”

See all papers in April 2015 that mention HeLa cells.

See all papers in PLOS Comp. Biol. that mention HeLa cells.

Back to top.

growth factor

Appears in 3 sentences as: growth factor (3) growth factors (1)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. The activation of ErbB receptors by epidermal growth factor (EGF) or heregulin (HRG) in the MCF7 breast cancer cell line exemplifies the impact of such transient or sustained signalling on cell fate [3, 4].
    Page 2, “Introduction”
  2. They are normally growth-quiescent in the normal adult vessels, but are activated by injury, or exposure to growth factors (including FGF2) and pro-inflamma-tory cytokines (including IL1b).
    Page 5, “Results”
  3. Pathways associated with the early peak signature included the transforming growth factor (TGF) beta signalling pathway, and the platelet derived growth factor (PDGF) signalling pathway, which play critical roles in cellular proliferation and development [24] and shares the downstream targets with the ErbB receptor signalling pathway, the receptors for EGF and HRG and all those belong to the members of receptor tyrosine kinases (RTK) family.
    Page 7, “The early peak signature is enriched for lEGs and signalling pathways”

See all papers in April 2015 that mention growth factor.

See all papers in PLOS Comp. Biol. that mention growth factor.

Back to top.

Gene Ontology

Appears in 3 sentences as: Gene Ontology (2) Gene ontology (1)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. Gene ontology terms associated with early peak clusters that were significantly over-repre-sented in HRG treated MCF7 cells are listed in 81 Table, see also S6 Fig (analysis performed with GOrilla [22] and REVIGO [23]).
    Page 7, “The early peak signature is enriched for lEGs and signalling pathways”
  2. (2007) [10], we constructed a set of 444 genes assigned with the Gene Ontology annotation for nucleotide binding GO:0000166 (IEA assignments were excluded).
    Page 8, “Kinetics and chromatin features underlying IEG induction”
  3. Gene Ontology process term enrichment in MCF7-HRG cells.
    Page 21, “peak category.”

See all papers in April 2015 that mention Gene Ontology.

See all papers in PLOS Comp. Biol. that mention Gene Ontology.

Back to top.

differential eXpression

Appears in 3 sentences as: differential eXpression (1) differential expression (1) differentially expressed (1)
In Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response
  1. Our computational statistical method is well suited to meta-analyses as there is no requirement for transcripts to pass thresholds for significant differential expression between time points, and it is agnostic to the number of time points per dataset.
    Page 1, “Abstract”
  2. This class of transcripts is currently understudied, but lncRNAs are differentially expressed during differentiation, are preferentially localised in chromatin and have been proposed to ‘f1ne-tune’ cell fate via their roles in transcriptional regulation [14—16].
    Page 3, “Introduction”
  3. The model definition and selection methodology we present is not limited by eXpression level, for example by tests for differential eXpression , nor do we rely upon the arbitrary thresholding that is common in clustering analyses.
    Page 18, “Discussion”

See all papers in April 2015 that mention differential eXpression.

See all papers in PLOS Comp. Biol. that mention differential eXpression.

Back to top.