The Universal Statistical Distributions of the Affinity, Equilibrium Constants, Kinetics and Specificity in Biomolecular Recognition

We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity), the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus nonnative binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of nonnative states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecu-lar recognition and function through small-molecule evolution and chemical genetics.

We meet the challenge by quantifying the statistical natures of the relevant physical variables of biomolecular recognition using the analytical model combined With microscopic flexible docking simulation methods. We uncovered the universal statistical laws obeyed by the affinity, equilibrium constant, intrinsic specificity and kinetics for bio-molecular recognition. The general statistical laws based on energy landscape theory can serve as a conceptual framework for molecular recognition in biological repertoires. They can be applied to molecular selection, in vitro evolution process, high throughput screening and virtual screening for drug discovery. The statistical laws in combinations With eXperiments provide quantitative signatures of a specific ligand binding to a specific receptor, these resultant laws as a guideline Will contribute to drug design against a specific target. Our developed statistical methodology is general and applicable for all other biomolecular recognitions.

On the practical side, it is also under intensive investigations in drug discovery and pharmaceutical industry [3]. There are two major issues in biomolecular binding. One is the affinity which is responsible for the driving force and the stability of the binding complex. The other one is the specificity [4, 5] which is crucial for molecular recognition measuring discriminations of “good” binding against “bad” binding. Using microscopic atomistic descriptions to quantitatively study binding is rather difficult [6, 7]. Further more, the accurate estimates of the physical relevant quantities are limited by the delicate balance between hydrophobic interactions, electrostatic interactions, solvation effects and conformational entropy.

Instead of studying a specific pair of biomolecular binding, for example, a receptor-ligand (or receptor-small molecule) complex, one can now search through the sequence space of li-gands or different small molecules and perform the binding experiments for each specific sequence of ligand binding to a particular receptor. The sequences or segments with good binding properties with the receptor will be the ones to select. Therefore by exploring the sequences of ligands (typically 106 ~ 109 sequences, a large number which is perfect for the statistical description) or small molecule databases (the number of small molecules can be on the order of 1060), one can explore the biological specificity and function by mimicking the natural evolution selection process with the fittest surviving from the ensemble of ligands. The combinatorial library or virtual screening of small molecule database therefore provides a natural laboratory for uncovering the fundamental principles in biomolecular binding and design through the study of the statistical features of the ensembles of the ligands or small molecules with different sequences binding to a specific receptor. In this way, one can characterize the re-ceptor-ligand system and obtain the important statistical information and distributions on the relevant physical properties or observables of the system such as the binding free energy, equilibrium constants, and specificity. The distribution of the physical variables obtained can be universal revealing the common features among different biomolecular binding complexes. It helps the understanding of the evolution and function. The values of the parameters in the distribution characterizing the properties of the underlying energy landscape may be different for different binding complexes. They can be inferred from the experiments.

Experiments on random sequence protein folding [11] and protein design [12], have implied the statistical distributions of physical observable. Experimental and computational studies on biomolecular binding have also shown evidences of distribution of physical relevant quantities such as binding equilibrium constants K [13—18]. Since Log K is proportional to the free energy difference between the native and nonnative states termed as the stability or affinity, this infers that the free energy also has a distribution. The experimental features on binding indicate that the appropriate physical variable is the free energy of binding of ligands to the receptor, not the energy. The similar situation also appears for random sequence protein folding and protein design. As a result, the free energy stability or affinity for each specific sequence of ligand can be obtained. Certain values of the affinity appear more often than others. The free energies therefore are distributed. When we discuss about the distribution of the free energies, we mean the sampling of different free binding energies from the different ligands with different sequences binding to the same receptor. The binding free energy of each individual ligand to a specific receptor can be calculated and measured directly from the experiments (through the equilibrium constant measurements). Collecting the free energies from different ligands binding to the same receptor, we can find the distributions of the free energy. The similar procedure applies to the statistics of specificity, equilibrium constants and kinetics for different ligands binding to the same receptor protein. We mainly focus on the statistics of the different ligands binding to the same receptor protein in this study. By exploring the sequence space of ligands, one also equivalently goes through the interactions and conformation space under the ergodicity condition. Here, we describe a physical hypothesis based on a thought experiment (see the Fig 1) [19—21]. Imagine we connect all the different receptors by linkers (for example, connecting N terminus of a protein and C terminus of another by glycines), then the whole universe of receptors now becomes one giant protein. When the receptor protein is large enough, probing the interactions of binding through different parts (binding sites/pockets) of the same receptor protein (panel B) and probing the interactions through the sequences (different receptors in panel A or different ligands in panel C) should be equivalent. The quantitative issue is how large the receptor protein should be in order to see the above mentioned approximate equivalence. Since the protein folds have been estimated to be on the order of a thousand [22] , the actual number of the interactions via the atomic contacts of the ligands with the receptors is finite and enumerable. In other words, a large but finite size protein may already contain most of the interactions encountered for ligand binding. Under the assumption of large receptor protein (large enough to effectively represent the sequences of the diverse receptor universe), obviously searching for all the binding sites or pockets of a particular finite size protein is equivalent to searching for the whole universe of the receptors. Therefore, in this case, probing interactions can be reached approximately equivalently by the following three approaches: (1) multiple ligands binding to the same receptor, or (2) multiple receptors binding to the same ligand, or (3) a ligand binding to a receptor exploring the different binding sites (modes). This hypothesis has been tested and validated for specificity of Cox-2/Cox-1 receptor-ligand complexes [21]. In other words, the statistical properties through the exploration of sequence space of different ligands with the same receptor is equivalent of searching through the conformational or structural space for a particular ligand receptor pair. Although the free energy is in general a complicated function of interactions and entropy, combinatorial library of ligands and database of small molecules provide us a great opportunity to study the interactions and underlying principles of binding. In the free energy distribution, the native (strongest) binding state(mode) should appear in the lowest end of the tail where the density of these binding states becomes discrete.

However, it is challenge to go through the whole universe of receptors to determine the binding specificity due to the lack of the full information. From the above equilvalence discussions in terms of probing the interactions of molecular recognition, another way of quantify the specificity is to find the discrimination in binding affinities of a ligand binding with different binding sites of a receptor. This is referred to the intrinsic specificity. Under large protein assumption, the intrinsic specificity and conventional specificity should be equivalent. The supporting evidence was illustrated in the Cox-2/Cox-1 binding with ligands [19—21]. Both affinity and specificity are crucial for determining the molecular recognition. An optimal quantitative criterion for the intrinsic specificity in discriminating the native from the nonnative states for the best binding sequences is found to be the maximization of the intrinsic specificity ratio (ISR) of the energy gap between the energies of the native state and the average of the other states versus roughness or fluctuation modularized by the entropy or size of underlying binding energy landscape [19, 20], see panel B of Fig 2 for the density of states of binding. This implies that the underlying binding landscape is funneled towards the native state. This is not surprising since the driving force of the binding is the same as folding, the hydrophobic interactions. The folding can be seen as self binding and binding can be viewed as folding with multiple domains without the linkages between the domains. Therefore, one expects that the resulting binding energy landscape should have a funneled shape towards the native state to guarantee the stability and intrinsic specificity as well as the kinetic speed of recognition against the bumps or wiggles along the binding paths. (see panel A,C of Fig 2). This is in parallel to the protein folding studies where similar optimal criterion for folding has been used to design fast folding protein sequences [23—25]. Different ligands or small molecules will have different specificity for binding with a specific receptor. Therefore, the intrinsic specif1city(ISR) should also have a statistical distribution. This reflects different degrees of binding specificity. There is a small group of high specificity ligands among all the available ones. This is rare and lies in the high end tail of the distribution of specificity.

We can use RMSD as order parameter to describe the position of an ensemble of states in the landscape. Through the RMSDs, the binding landscape is stratified and simplified. We can define an average energy over many states with different energies and RMSDs within each stratum. Then the local kinetics between the binding states with the different average energies can be explored, the global kinetics between the native state and nonbinding ones can also be described. In other words, the kinetics of ligand receptor recognition on the binding energy landscape can also be studied. We have previously performed analytical studies of kinetics With both global and local connectivity [26, 27] as well as microscopic flexible docking studies of ligand receptor binding [21]. We also found that intrinsic specificity quantified by ISR not only guarantees the thermodynamic stability and specificity but also guarantees the kinetic accessibility and the speed of the recognition. While the average kinetics has been investigated, there are only limited studies on the statistics of the kinetics, mostly at the analyatical level [27—32].

Thus it is the purpose of this paper to fill the gap. Furthermore, the advances of combinatorial chemistry With the capability of generating large number of small molecules at once and high throughput screening provide us a great opportunity of obtaining the statistical information on thermodynamics and kinetics for molecular recognition through the eXploration of the ensemble of sequence space of small molecules (combinatorial ligand binding). The statistical information on thermodynamics can be probed from the eXperiments by measuring the thermodynamic stability through equilibrium constant measurements for different ligands binding With a receptor. On the other hand, the statistical information on the kinetics (on/off) can be probed from the eXperiments by measuring the kinetic rates through dissociation constant measurements for different ligand binding With a receptor. These statistical information Will be crucial to uncover the global and universal features of the thermodynamics and kinetics of the associated molecular recognition. Characterizing the shapes of the statistical distributions of these physical variables relevant to the thermodynamics and kinetics not only allows a better statistical description of the eXperimental and theoretical results but also permits the testing of hypothesis about the underlying molecular recognition processes. It is also important for the practical application of

For analytical studies, since we are mostly interested in the general laws governing the biomolecular binding, the task here is to obtain the universal features. We can use the coarse grained level description instead of the microscopic detailed one to characterize the system.

Since there are many different types of atoms and also many different cutoff distances for the interactions, different Iij can have different values. This forms a distribution for the coupling strength I. Since the number of different I couplings are large, the statistical distribution should have a Gaussian form from the large number theorem. Since the energy is linearly related to the coupling. This leads to a random energy model with the interaction energy follows a Gaussian distribution [19, 33, 34]. This reflects the complexity of the underlying interactions in contrast to the conventional deterministic models for simple systems where the coupling strengths are fixed and not distributed [35]. Furthermore, we can study the energy landscape of ligand binding using the random energy model with the certain bias towards the native state [19]. This assumes that the energies of nonnative states and their interactions are random variables with given probability distributions as discussed above. The binding process can be illustrated as random walks on a rough binding energy landscape with bias towards the native state [19]. Based on the more detailed description in SI Text [26—30, 32, 36, 37] and the simulation method of this study, we can obtain the free energy, equilibrium constant, intrinsic specificity and the kinetics distribution from the random energy model analytically and those from the direct simulations.

Because the underlying interaction energy is Gaussian distributed, the functional form of the distribution of the resulting free energy can be obtained by carefully studying the moments of the partition function of the resulting random energy model [36, 37]. The distribution function f has the form of: Where f(F) is a Gaussian distribution of the free energy F around its mean 1—3 (See details in 81 Text) With the variance of the distribution A132 2 AB2 (The Width of the energy distribution AE here has the meaning of the roughness of the underlying energy landscape above the trapping transition temperature TC. T6 = ‘ /A2—Es2 is the trapping transition temperature representing the onset of the local trapping of the underlying energy landscape, S represents the configurational entropy measuring the size of the configurational space Which scales With the size of the system

The entropy S(E) as a function of energy for the random energy model. The curve is entropy S(E) = |n[n(E)], where n(E) is the density of states with energy E from the spectrum, EC is the corresponding energy of the trapping transition temperature To. As we see, the point M moves on the curve with the changes in the

S = KBlogQ Where Q represents the number of states in the configurational space.) Furthermore, f(F) can be shown to have the exponential distribution in the tails near or below TC [32, 36, 37]:

Notice that the mean free energy is close to |FC — Tel (here, KB 2 1) and the Width of the distribution is on the order of TC. Notice that the distribution of free energy develops an exponential tail Which decays slower than the Gaussian distribution. Therefore, the rare (low probability) events With low free energies in the spectrum of the specific sequences are more prominent in the eXponential distribution.

Since entropy is related to the distribution of the states in energy or density of states (8 = ln[n(E)] ), we can see the relationship between the energy (left side of the equation) and temperature (right side of the equation). Physically it is clear that the slope of distribution is inversely proportion to temperature (Fig 3). In other words When the temperature is high (the slope of the distribution 1/T is low), then the energy is at the center of the distribution and When the temperature is low (slope of the distribution 1/T is high), then the energy is at the tail of the distribution (Fig 3). This can be seen clearly in Fig 3. Since free energy is related to energy, high energy leads to high free energy. Therefore, When temperature is high, then the free energy is at the center of the distribution and When the temperature is low, then the free energy is at the tail of the distribution (Fig 3). This is also true for the affinity, equilibrium constant, ISR and kinetic rate distributions Where all of these variables are directly related to the free energy. Therefore, these give the correspondences of the analytical results for distribution of the variables in different temperature ranges With the simulation results for distribution of the variables in different variable ranges. On the other hand, since partition function Z has an asymptotic form and a power law distribution at the tail, the associated free energy is therefore exponentially distributed at the tail (x—>oo)(See details in SI Text). In other words, for the distribution of free energy, we can obtain two distinct regions (such as low and high free energy) of the corresponding physical variable.

Failure to do so results incomplete information of the system. It is interesting to notice that experimental evidence for the distribution of free energy seems clear. However, the average is usually obtained and used to study the thermodynamics and the kinetics in the current microscopic atomistic simulations on the binding, where the free energy perturbation and other approximation methods are often used. The higher order statistical information such as variance and the whole distribution are not noticed with much attention and hardly explored. As we point out, with the computer hardware speed rapidly improving, the more comprehensive information can be obtained in silico. Careful analysis based on microscopic simulation studies, the determination of the parameter values appearing in the current analytical approach and comparisons with the experiments are crucial for the more complete description of the binding process. The universal distribution of the equilibrium constant of biomolecular binding. The equilibrium constant K for the biomolecular binding complex measured often in the experiments is defined as the difference between the free energy of the native F” and the completely Fl’l _Fun RT

The Log K decreases too. The biomolecular binding complex is more stable. The affinity also increases. Therefore from the definition, the Log K measures the ability of the two biomolecules associate with each other or the affinity. The equilibrium constant can be mea-non-native states FunzlogK = . Note that as the differences of the free energies of the native sured directly from the experiments. In the combinatorial experiments, one can further measure the statistical information of the equilibrium constant by exploring different ligand binding with a receptor one at a time. Based on the probability theory and statistics, if the random variable X is log-normally distributed, then Y = log(X) has a normal distribution. Likewise, if Y has a normal distribution, then X = exp(Y) has a log-normal distribution. In other words, by knowing the distribution of free energy, one can derive the probability distribution of the equilibrium constant K (logK = %) as well since the logarithm of the equilibrium constant K is directly related to the free energy difference between the native and nonnative states (the nonnative states are Gaussian distributed while the native state is very narrowly distributed). Since the aforementioned distribution of free energy is the Gaussian in this study, one can easily obtain the distribution function of the equilibrium constant K as log-normal. So, the distribution function f of the equilibrium constants K or the affinity can be shown to be: which is a log-normal distribution near the mean above TC While which shows a power law decay near the low K value tail of the distribution (near or below TC). This power law behavior is familiar in the physics and chemistry community as a signature of the long range order and self similarity often appeared in the critical phenomena of phase transition, fractals, turbulence and earthquakes etc. The slow power law decay (as compared with the Gaussian like distribution) indicates a long tail in the equilibrium constant distribution. In this situation, similarly, the average is no longer a good representative of the distribution. The whole distribution function is needed to characterize the system. This implies that the rare events at the tail may play a dominant role. The phenomenon is often termed as intermittency. The power law behavior of the equilibrium constant in the tail therefore indicates that most of the binding molecules show small binding affinities, only occasionally a specific pattern will lead to high affinity. Therefore, characterizing the global shape of the statistical distribution of equilibrium constant is necessary for the molecular binding. Finding high affinity or the associativity is rare but important to study the evolution and function for binding. By obtaining the experimental measurements of the distributions one can estimate the relevant thermodynamic quantities that fit the eXperiments from more microscopic approaches based on molecular interactions and structures. Comparing model distributions here with the eXperiments may also guide the approaches to uncover the underlying correlations between native binding free energy and affinity (equilibrium constant). The intrinsic specificity and its universal distribution for biomolecular binding. From the distribution of the free energy studied in this paper f (F) N exp [— (2,532] , we see that the width or the fluctuations of the free energy spectrum AF is equal to AE, and the average of the free energy is 1—3. As discussed earlier, affinity giving the ability of association of two molecules in general can not guarantee the intrinsic specificity that gives the discrimination of the native state from nonnative ones. To select a good sequence for binding and realize the specificity, one should have the free energy gap between the ground state or the cluster (group) of states with the lowest free energy of binding relative to the average free energy to be large compared with the width of the distribution of the binding free energy. Only in this way one can discriminate the native state from others and guarantee the intrinsic specificity. That is:

This gives the optimal criterion of binding specificity. If we consider further the detail of the eXponential distribution near the tails: f (F) N exp (Is—TF9] Where PC as previously mentioned is the cutoff free energy, the mean is equal to FC — TC and the Width is equal to Tc, the optimal cri-From the eXpression of the free energy distribution, one can easily obtain the distribution of the native free energy to be: f(Fn|N) =f(Fn)f(F,, < N, — 1) Where F” is the native free energy, [ff(F)dF]Nt_1 is the conditional probability of free energy of native state less than the rest of the spectrum assuming there are total Nt number of states [40, 41]. Based on this, one can easily convert the above distribution of the native state free energy distribution to the one for the AF

The distribution becomes narrower and the center of the distribution shifts towards larger values of ISR when the number of states is larger. In addition, the distribution becomes more skewed under this situation. This implies that as the number of states become more and more, averagely speaking, there are more and more chances of finding the more stable complexes with larger values of ISR. The corresponding distribution ISR(ISR TC“) near the tail around or below TC can be shown to be:

If one makes a histogram for the values of the specificity ISR for the native states and random sequences, one would expect to see the center of the two distributions are well separated by a gap which guarantees the intrinsic specificity. Therefore one can use the optimal criterion to select the stable and specific complexes with good and discriminative binding properties from random sequences. Kinetics and its universal distribution for biomolecular binding. Under the quasi-equi-librium condition, the time scale 1‘ of binding of a particular sequence of ligand with a receptor can be approximated as: log(%) = FLTFW [28, 29]where F11 is the free energy of the transition state ensemble, Fun is the free energy of the completely nonnative states, To is prefactor for the time scale for the binding process between binding states. Therefore, the time scale of binding from one binding state to a neighboring state is determined by the free energy difference of these two states. In this study, the first passage time(FPT) to reach the native binding state(the time required for the random walker to visit order parameter RMSD ~ 0 for the first time) is used as a typical or representative time scale for binding. The mean first passage time(T) representing the binding time has a U(or V) shape dependence on temperature [27]. Similar to the behavior of K, assuming a common Ffi, the distribution of T can be shown to have the form as: giving log-normal distributions near the mean above Tc While gives much slower power law decay distributions near the tails of the distribution near or below Tc) [31, 32].

We established a diffusion and a kinetic master equation approach to study statistically the microscopic state dynamics. The exponential density of states emerges when the system becomes glassy and landscape becomes rough with significant trapping under low temperatures as shown earlier from the analytical studies [32, 36, 36, 37]. We show that the underlying landscape with exponentially distributed density of states leads to power law distribution of kinetics(f(x) ~ 1‘ ‘1 _T/TC). We predicted that the power law decay coefficient is monotonically dependent on temperature which can be tested from ongoing experiments. This may bridge statistics from single molecule kinetic experiments and topography of conformational energy landscape [42—48].

When the temperature drops below Tc, the distribution of FPT deviates from log-normal significantly. The traps become more important. Discrete pathways emerge. The distribution at long times approaches a power law. This indicates that the fluctuations in FPT are significant and deviate from the mean [27]. The fluctuations start to diverge. This means that the actual conformation dynamic process may happen on multiple time scales, and the nonself-averaging behavior emerges. The distribution of FPT then has fatty tails. This indicates that the intermittent phenomenon, where rare events can give a significant contribution to the binding. Due to the ruggedness of the binding energy landscape at low temperatures, specific different discrete paths give distinct contributions to the kinetics. The shape of distribution of FPT is then required to characterize the whole system dynamics rather than only the mean. It is worthwhile to emphasize that our analytical studies in conformational dynamics, protein folding and ligand binding all indicate that the kinetics should follow log-normal distribution at higher temperatures and power law distribution at the low temperatures [27—29, 31, 32]. Our analytical studies formed a mathematical foundation and motivation for us to eXplore the distribution in kinetics in real ligand binding.

Therefore in analytical model, for example, we can obtain the distribution of binding affinity for the ensemble of different atomic contact interactions (with different nonnative unbinding states). Due to the equivalence, this implies that the affinity for receptor binding to different ligands or ligand binding to different receptors is eXpected to follow the same statistical distribution.

Initially a diverse set of 720 small molecules were selected from the NCI-Diversity database [49] having molecular weights similar to that of the reference compound SC-558, for which the crystal structure of the COX-2 complex is available (PDB code ICXZ) [50, 51]. All conformers of each of the 720 selected molecules were docked with COX-2 using AutoDock [52] to generate a binding energy spectrum for each. Furthermore, the correlation coefficient of 0.65 between experimental and predicted affinities (Fig 4 and SI Table) demonstrate reasonable reliability of Autodock scoring for the Cox-2 target.

Fig 5 shows the distribution of affinity. As easily seen, near the center or the mean, the distribution can be fitted well with a Gaussian. Near the tail, the distribution of the affinity can be fitted well with exponential. This confirms the analytical results discussed above. Most of the ligands bind to a receptor with relatively small affinities. A small number of the ligands has high affinity to a receptor, these ligands are crucial for exploring the biological function of the receptor.

We see that the logarithm of equilibrium constant can be fitted well with a normal distribution near the mean while near the tail can be fitted well with a exponential distribution. Thus, we can extrapolate the statistical properties of the equilibrium constant distribution. That is, the equilibrium constant can be fitted well with a log-normal distribution near the mean while near the tail can be fitted well with a power law distribution. In contrast to the gaussian distribution, the log-normal distribution has a longer tail representing the higher frequencies of equilibrium constant when plotted in the original scale without taking the logarithm. The power law distribution of the equilibrium constant suggests most of Exp

Validation of Autodock scoring to predict the binding affinities for 20 drugs against the Cox-2. doi:10.1371/journal.pcbi.1004212.9004 O raw data

The distribution of the free energy with 720 compounds binding to the Cox2. the vertical axis represents the number of states or probability for the free energy, gaussian curve: in the center; exponential curve: near the tail. The parameter values for these distributions are presented. The analytical function consisting of a Gaussian and two exponential functions is highlighted with red line. O raw data — fitting function Count

The distribution of the logarithm of equilibrium constant with 720 compounds binding to the Cox2. the vertical axis represents the number of states or probability for the equilibrium constant, gaussian curve: in the center; exponential curve: near the tail. The parameter values for these distributions are presented. The analytical function consisting of a Gaussian and two exponential functions is highlighted with red line.

The large equilibrium constants although rare can contribute greatly in determining the biological stable function. They are the critical ones in molecular recognition.

We also see that the distribution of the intrinsic specificity can be fitted well with the normal distribution near the mean and also well fitted with the exponential distribution at the tail. This means most of the ligands with random sequence non-specifically bind to a receptor with low specificity. A few ligands specifically bind with a receptor with high specificity. They are at the high end tail of the intrinsic specificity distribution. Herein, we have computationally determined the kinetic specificity of binding using kinetic off time of binding Timeoffto represent the time scale 1‘. To demonstrate the reliability of the Timeoficwe have defined, the analysis regarding the correlation between the predicted and eXperimental kinetics have been performed for the 22 drugs against the Cox-2 target, a reasonable correlation with the coefficient O.62(Fig 8 and 81 Table) was obtained. As described in Fig 9, we found that the distribution of kinetics can be fitted quite well with log-normal distribution near the mean and power law distribution at the tail. This is consistent with our analytical models above.

From combinatorial point of View, each ligand binds to a receptor with certain affinity and equilibrium constant. By collecting the measurements of different ligands (combinatorial chemistry of peptides or screening with a library of small molecules) each binding with a receptor, average of these quantities can be obtained. Furthermore the statistical information such as high order moments and distribution (histograms) or probability can be also obtained. Similarly, the kinetics can be also explored easily for the statistical information. Intrinsic specificity, on the other hand, is quite difficult to directly measure. However one can indirectly infer the statistical information for the intrinsic specificity from the statistical measurements of both the affinity and kinetics. The ligands with the same affinity might still have different specificity from kinetic point of view.

This gives a quantitative signature or characterization of a specific ligand binding to a specific receptor. Importantly, we have found analytical functional expressions for the distributions of free energy, specificity, equilibrium constants and kinetics covering the whole range of these variables including near the mean and at the tail as well as the regime in between (See details in 82 Text) which can give Gaussian statistics at the center and eXponential statistics at the tail, respectively.

Different free energy landscapes give different free energy barrier heights between the non-na-tive and native states. This leads to different kinetics for binding(Figs 2 and 10D). As we can see the large intrinsic specificity characterized by high ISR gives smaller free energy barrier and lower ISR gives higher barrier. There is also a structural correspondence shown in the figure for different ligands. The ligands with the fork structure have high structural specificity and

Fig 8. The relationship between the predicted and experimental kinetic specificities for 22 drugs against the Cox-2. Timefiged represents the relative predicted residence time and Timeoffopred is the constant weighting factor, Wmefi’fifp is the experimental residence time.

We plot the free energy barrier height and the kinetic time for binding of these three cases as shown in Fig 10D. By exploring the different off rates Timeofic and on rates Timeon of binding for three ligands, we found that the ligand with higher ISR has faster on rate and slower off rate. In other words, the ligand has longer residence time for binding. In contrast, the ligand with lower ISR has slower on rate and faster off rate with shorter residence time. In a word, we found indeed that the large ISR leads to lower barrier height and faster kinetics. This implies that the kinetics is determined by the intrinsic specificity which is determined by the competition of the slope of the landscape towards the native state and the roughness of the landscape, not just by the affinity alone as conventionally people would have thought. There are recently growing experimental evidences of the similar affinity but completely different kinetic accessibility [53, 54].

It is also interesting to note that large ISR tends to imply the underlying energy landscape is a smooth funnel towards the native state and binding kinetics is fast. This usually results exponential kinetics. The smaller values of ISR tend to imply bumpy energy landscape with the kinetic rates following a slow decay distribution, producing non-exponential kinetics.

HTS(High Throughput Screening) and VS(Virtual Screening) technologies which are pertinent to receptor and ligand repertoires, are increasingly becoming significant for exploring the universal statistical behavior of the entire ensemble of binding. This may provide us an insight to the physical universal laws that underlie non-covalent interactions in biomolecular recognition. An intriguing result of the present distribution analysis is the possibility of extrapolation of the fitted curves from the center to tail region(for example, the low affinity and the high-af-finity domain). Thus, based on the fitted parameter from relatively small ligand database (about 700 members in the current study), which statistically attain binding affinities in the range of -4kcal/mol to -12kcal/mol; it is possible to derive information regarding the much higher binding affinities for larger libraries. The probability and physical relevant quantity range is found to fit adequately the distribution functions from the analytical model, and the two kinds of curves are fitted well to the data in the center and near the tail.

It could be naturally applied to study human olfactory threshold variability [13, 55], autoimmune phenomena such as self vs. non-self recognition [56—58] , and specificity of drugs for the Cytochromes P450 repertoire. Remarkably, the comprehensive knowledge of the statistics of affinity distributions in many studies have led to a better understanding of molecular selection [59] , and in vitro evolution process such as combinatorial library panning, SELEX technology exploring the RNA/DNA-ligand interactions [60—64] , and high throughput screening for drug discovery to study the receptors or enzymes binding with the lead compounds [65, 66].

In particular we obtained the analytical functional form of the probability function of the binding free energy to be Gaussian distributed near the mean and exponential-like distributed in the tail. Furthermore we obtain the log-normal distribution near the mean and power law decay distribution near the tail for the equilibrium constants of binding. The optimal criterion of native ground state dominance and the intrinsic specif1city should be the maximization of the ratio of free energy gap between native state and the average nonnative states versus the width of the distribution of the free energy landscape. The quantitative form of intrinsic specif1city criterion can be used to develop new algorithms to design ligands with high intrinsic specificity for a particular receptor. Alternatively, one can design receptors that are selective for a particular ligand. The statistical distribution of the intrinsic specificity ratio is also Gaussian distributed near the mean and exponentially distributed near the tail. We give an analytical form of the distribution of the kinetics. We have confirmed the analytical form of the distribution functions with 720 diversified small molecules binding with a specific receptor: Cox-2 protein enzyme.

Furthermore, the coefficients and parameters characterizing the ligand binding are different for each ligand. It is worthwhile to point out that there is a weak positive relationship between affinity and intrinsic specificity. We also found a positive correlation between affinity and kinetics of ligand binding(See SI and 82 Figs). Molecular recognition in protein-ligand, protein-protein and protein-DNA interactions often involves interplay between affinity and specificity or thermodynamics and kinetics. As known, high affinity does not always guarantee the high specificity. We can see that the correlation between affinity and intrinsic specificity is weak because there is a large spread in the correlation plot between the two. That is to say there is a large dispersion in intrinsic specificity at given affinity (81 Fig). In general, we need both affinity and specificity to quantify the molecular recognition process. For the lead compound search in drug discovery, high specificity is often achieved by increasing the specific hydrophobic interactions between the ligand and the target [20], while high affinity often relies on some crucial interactions such as hydrogen-bonding. So the quantification of both affinity and specificity rather than affinity alone will contribute to the fundamental understanding of molecular recognition.

The residence time has certain degree of negative correlation with affinity (82B Fig). This might be due to the increase of the free energy barrier for escaping the binding from the increase of the affinity. The correlation of residence time with respect to affinity is also with spread. But the dispersion is narrower than the correlation between affinity to intrinsic specificity or on time of ligand binding. Therefore, in general, since there is no perfect correlation between affinity and specificity at the thermodynamic or kinetic level, one should consider both of them in exploring the biomolecular recognition. It should be noted that the interplay between affinity and specificity has also motivated the design of the new score functions of molecular docking [21, 67, 68] by optimizing the corresponding interplays in molecular binding. These further indicate that one needs a comprehensive and multidimensional statistical characterizations for molecular recognition.

So this statistically characterizes each ligand binding to the specific receptor protein with a few characteristic parameters or indicators such as affinity and specificity. When applies to drug screening, this suggests a multidimensional screening strategy using both affinity and specificity rather than affinity alone in the traditional drug discovery.

For more general interactions such as protein-protein interactions and protein nuclei acid interactions, we have performed the investigations on their underlying natures [67, 68]. These studies are on the affinity and specificity at the mean level. We plan to generalize our statistical study here for ligand protein interactions to protein-pro-tein and protein-nuclei acid interactions. For rigid binding, we expect similar statistical behaviors. We can take into account flexible binding at the local level by sampling all the important conformations. However, for flexible binding at the global level, it is still a challenge. Some initial efforts have already been made towards this at the mean level that we can use to explore further the associated statistics [69]. In this paper, to the first order approximation, we have ignored correlations between different states. It is expected that the correlations will influence the tail properties of the statistical distribution of the physical relevant variables quantitatively. It Will be interesting to extend the current study to incorporate this effect [70, 71].

In order to obtain the free energy, one has to study the thermodynamics of the system. One can do so by starting with an order parameter characterizing the system. A natural choice of the order parameter is the contact variable defined as the contact probability between an atom of the receptor protein and an atom in a small molecule ligand: oi]- (aij = 1 when d < A and 017-: 0 when d > A) where A is a fixed cutoff distance usually on the order of several angstrom and d is the distance between two residues (or two atoms in the case of small molecule binding with a receptor) which measures how close the two residues are to each other. The interaction hamiltonian or the energy function of the system in terms the contact variables can be written as whereas Ii]- is the coupling strength between the one atom on a receptor and another one on a ligand. Of course, one can include more complicated form of interactions such as multi-body interactions which mimic the hydrophobic interactions and non-additive properties of the interactions. But this will not influence the general features of the system. We will therefore postpone the discussion on more complicated forms of hamiltonian in the future. It is worth noticing that this form of the interaction hamiltonian has been widely used in analytical models [70—72], in lattice simulation models [73, 74], off-lattice models [75, 76] of protein folding and protein-structure predictions [23—25].

This is because there are n different kinds of atoms, so there are about n(n — 1)/2 different kinds of interaction strengths at a particular distance between the two atoms. If we variate the distances, the number of interactions will be even more. On the other hand, the purpose of this paper is to study the ensemble of different ligands binding to the receptor. The ensemble of sequences is equivalent to the ensemble of interactions under the ergodicity hypothesis. In other words, changing the sequences of atoms is equivalent to changing the interactions. Therefore by shuffling sequences, one equivalently goes through different interactions. Based on this argument of the equivalence between many possibilities of interaction types due to the multiple types of atoms and ensemble of sequences of ligands, the coupling strengths Il-j can be seen to have a distribution. According to the large number theorem in statistics, this distribution is approximately Gaussian, that is: Wherel is the average coupling strength and A]2 is the variance. The distribution of the energy of the system can be obtained by calculating < 6(E — H) > Where average is over interaction coupling strengths Iz-j. It is also Gaussian distributed:

N is the total number of contacts. If we ignore the correlations between the different energy states, the result is an independent random energy model [36, 37].

Initially a diversity set of 720 small molecules were selected from the NCI-Diversity database [49] having molecular weights similar to that of the reference compound SC-558, for which the crystal structure of the COX-2 compleX is available (PDB code ICXZ) [50, 51]. All conformers of each of the 720 selected molecules were docked with COX-2 using AutoDock [52] to generate a thermodynamic binding energy landscape for each. From this data, the affinity and also intrinsic specificity quantified by ISR for each molecule with COX-2 were calculated as defined above and in Fig 2B.

In this report, we use the RMSD as an order parameter (RMSD represents the root mean square distance relative to the native binding structure) that represents the progress of binding towards native state. For activation process, the order parameter or reaction coordinate RMSD is likely to be locally connected. It is straightforward to see that the overall kinetic process involves diffusion in order parameter RMSD space. In other words, one can start with a general kinetic master equation, by assuming the local connectivity in RMSD, derive a diffusion equation [26—30, 32]:

The diffusion coefficient is essentially the average time leaving the local minimum energy site. In terms of the order parameter RMSD, the problem becomes one dimensional diffusion. The diffusion equation can be integrated to give the mean first passage time: RMSDZ- ~ 1A is Where the native binding state is. The boundary conditions for the Fokker-Planck equation are set as a reflecting one at RMSDi, Where system is in native

This is for getting the off rate of binding. To get the on rate of binding, we just reverse the order of the reflecting (at nonnative) and absorbing boundary condition (at native). The choice of an absorbing boundary condition facilitates the calculation for the first passage time and its distribution.

81 Fig. the relationship between the predicted affinity and specificity(ISR) for 720 drugs 82 Fig. the relationship between the predicted affinity and the predicted kinetic specificity for 720 drugs against the Cox-2. (EPS) also listed. (DOC)

The derivation for the free energy distribution. (DOCX)

The fitting procedure for the simulation results. (DOC) Acknowledgments XLZ would like to thank Professor Erkang Wang for the enlightening discussion.

Appears in 57 sentences as: free energies (5) free energy (70) free energy, (1)

In *The Universal Statistical Distributions of the Affinity, Equilibrium Constants, Kinetics and Specificity in Biomolecular Recognition*

- We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity), the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor.Page 1, “Abstract”
- The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus nonnative binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of nonnative states versus the roughness measured by the variance of the free energy landscape around its mean.Page 1, “Abstract”
- The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecu-lar recognition and function through small-molecule evolution and chemical genetics.Page 1, “Abstract”
- In this way, one can characterize the re-ceptor-ligand system and obtain the important statistical information and distributions on the relevant physical properties or observables of the system such as the binding free energy , equilibrium constants, and specificity.Page 2, “Introduction”
- Since Log K is proportional to the free energy difference between the native and nonnative states termed as the stability or affinity, this infers that the free energy also has a distribution.Page 3, “Theory and Analytical Models”
- The experimental features on binding indicate that the appropriate physical variable is the free energy of binding of ligands to the receptor, not the energy.Page 3, “Theory and Analytical Models”
- As a result, the free energy stability or affinity for each specific sequence of ligand can be obtained.Page 3, “Theory and Analytical Models”
- The free energies therefore are distributed.Page 3, “Theory and Analytical Models”
- When we discuss about the distribution of the free energies , we mean the sampling of different free binding energies from the different ligands with different sequences binding to the same receptor.Page 3, “Theory and Analytical Models”
- The binding free energy of each individual ligand to a specific receptor can be calculated and measured directly from the experiments (through the equilibrium constant measurements).Page 3, “Theory and Analytical Models”
- Collecting the free energies from different ligands binding to the same receptor, we can find the distributions of the free energy .Page 3, “Theory and Analytical Models”

See all papers in *April 2015* that mention free energy.

See all papers in *PLOS Comp. Biol.* that mention free energy.

Back to top.

Appears in 39 sentences as: ligands (43)

In *The Universal Statistical Distributions of the Affinity, Equilibrium Constants, Kinetics and Specificity in Biomolecular Recognition*

- We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity), the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor.Page 1, “Abstract”
- Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors.Page 1, “Abstract”
- Therefore by exploring the sequences of ligands (typically 106 ~ 109 sequences, a large number which is perfect for the statistical description) or small molecule databases (the number of small molecules can be on the order of 1060), one can explore the biological specificity and function by mimicking the natural evolution selection process with the fittest surviving from the ensemble of ligands .Page 2, “Introduction”
- The combinatorial library or virtual screening of small molecule database therefore provides a natural laboratory for uncovering the fundamental principles in biomolecular binding and design through the study of the statistical features of the ensembles of the ligands or small molecules with different sequences binding to a specific receptor.Page 2, “Introduction”
- The experimental features on binding indicate that the appropriate physical variable is the free energy of binding of ligands to the receptor, not the energy.Page 3, “Theory and Analytical Models”
- When we discuss about the distribution of the free energies, we mean the sampling of different free binding energies from the different ligands with different sequences binding to the same receptor.Page 3, “Theory and Analytical Models”
- Collecting the free energies from different ligands binding to the same receptor, we can find the distributions of the free energy.Page 3, “Theory and Analytical Models”
- The similar procedure applies to the statistics of specificity, equilibrium constants and kinetics for different ligands binding to the same receptor protein.Page 3, “Theory and Analytical Models”
- We mainly focus on the statistics of the different ligands binding to the same receptor protein in this study.Page 3, “Theory and Analytical Models”
- By exploring the sequence space of ligands , one also equivalently goes through the interactions and conformation space under the ergodicity condition.Page 3, “Theory and Analytical Models”
- When the receptor protein is large enough, probing the interactions of binding through different parts (binding sites/pockets) of the same receptor protein (panel B) and probing the interactions through the sequences (different receptors in panel A or different ligands in panel C) should be equivalent.Page 3, “Theory and Analytical Models”

See all papers in *April 2015* that mention ligands.

See all papers in *PLOS Comp. Biol.* that mention ligands.

Back to top.

Appears in 17 sentences as: power law (17)

In *The Universal Statistical Distributions of the Affinity, Equilibrium Constants, Kinetics and Specificity in Biomolecular Recognition*

- The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail.Page 1, “Abstract”
- Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail.Page 1, “Abstract”
- On the other hand, since partition function Z has an asymptotic form and a power law distribution at the tail, the associated free energy is therefore exponentially distributed at the tail (x—>oo)(See details in SI Text).Page 8, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- So, the distribution function f of the equilibrium constants K or the affinity can be shown to be: which is a log-normal distribution near the mean above TC While which shows a power law decay near the low K value tail of the distribution (near or below TC).Page 8, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- This power law behavior is familiar in the physics and chemistry community as a signature of the long range order and self similarity often appeared in the critical phenomena of phase transition, fractals, turbulence and earthquakes etc.Page 8, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- The slow power law decay (as compared with the Gaussian like distribution) indicates a long tail in the equilibrium constant distribution.
- The power law behavior of the equilibrium constant in the tail therefore indicates that most of the binding molecules show small binding affinities, only occasionally a specific pattern will lead to high affinity.Page 9, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- Similar to the behavior of K, assuming a common Ffi, the distribution of T can be shown to have the form as: giving log-normal distributions near the mean above Tc While gives much slower power law decay distributions near the tails of the distribution near or below Tc) [31, 32].Page 10, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- Previously we analytically explored the origin of power law distribution of kinetics observed in single molecule conformational dynamics experiments [28, 29, 32].Page 10, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- We show that the underlying landscape with exponentially distributed density of states leads to power law distribution of kinetics(f(x) ~ 1‘ ‘1 _T/TC).Page 10, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- We predicted that the power law decay coefficient is monotonically dependent on temperature which can be tested from ongoing experiments.

See all papers in *April 2015* that mention power law.

See all papers in *PLOS Comp. Biol.* that mention power law.

Back to top.

Appears in 14 sentences as: small molecule (6) small molecules (12)

- The technology advances in combinatorial synthesis of peptide [8] as well as virtual screening of small molecule databases provide a new route [9, 10] to address the above mentioned issue.Page 2, “Introduction”
- Instead of studying a specific pair of biomolecular binding, for example, a receptor-ligand (or receptor-small molecule) complex, one can now search through the sequence space of li-gands or different small molecules and perform the binding experiments for each specific sequence of ligand binding to a particular receptor.Page 2, “Introduction”
- Therefore by exploring the sequences of ligands (typically 106 ~ 109 sequences, a large number which is perfect for the statistical description) or small molecule databases (the number of small molecules can be on the order of 1060), one can explore the biological specificity and function by mimicking the natural evolution selection process with the fittest surviving from the ensemble of ligands.Page 2, “Introduction”
- The combinatorial library or virtual screening of small molecule database therefore provides a natural laboratory for uncovering the fundamental principles in biomolecular binding and design through the study of the statistical features of the ensembles of the ligands or small molecules with different sequences binding to a specific receptor.Page 2, “Introduction”
- Although the free energy is in general a complicated function of interactions and entropy, combinatorial library of ligands and database of small molecules provide us a great opportunity to study the interactions and underlying principles of binding.Page 4, “Theory and Analytical Models”
- Different ligands or small molecules will have different specificity for binding with a specific receptor.Page 4, “Theory and Analytical Models”
- Furthermore, the advances of combinatorial chemistry With the capability of generating large number of small molecules at once and high throughput screening provide us a great opportunity of obtaining the statistical information on thermodynamics and kinetics for molecular recognition through the eXploration of the ensemble of sequence space of small molecules (combinatorial ligand binding).Page 5, “Theory and Analytical Models”
- Initially a diverse set of 720 small molecules were selected from the NCI-Diversity database [49] having molecular weights similar to that of the reference compound SC-558, for which the crystal structure of the COX-2 complex is available (PDB code ICXZ) [50, 51].Page 11, “Microscopic Atomic Binding Model and Simulation Results”
- From this data, the statistical distribution of the affinity (defined as the free energy difference between the native state and the average of the free energy) of 720 small molecules with COX-2 was described.Page 11, “Microscopic Atomic Binding Model and Simulation Results”
- In Fig 6, we show the logarithm of the equilibrium constant distribution for the 720 small molecule binding with Cox2.Page 11, “Microscopic Atomic Binding Model and Simulation Results”
- By collecting the measurements of different ligands (combinatorial chemistry of peptides or screening with a library of small molecules ) each binding with a receptor, average of these quantities can be obtained.Page 13, “Microscopic Atomic Binding Model and Simulation Results”

See all papers in *April 2015* that mention small molecules.

See all papers in *PLOS Comp. Biol.* that mention small molecules.

Back to top.

Appears in 10 sentences as: Gaussian distributed (4) Gaussian distributed: (1) Gaussian distribution (4) gaussian distribution (1)

- The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail.Page 1, “Abstract”
- This leads to a random energy model with the interaction energy follows a Gaussian distribution [19, 33, 34].Page 6, “Results and Discussion”
- Because the underlying interaction energy is Gaussian distributed , the functional form of the distribution of the resulting free energy can be obtained by carefully studying the moments of the partition function of the resulting random energy model [36, 37].Page 6, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- Where f(F) is a Gaussian distribution of the free energy F around its mean 1—3 (See details in 81 Text) With the variance of the distribution A132 2 AB2 (The Width of the energy distribution AE here has the meaning of the roughness of the underlying energy landscape above the trapping transition temperature TC.Page 6, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- Notice that the distribution of free energy develops an exponential tail Which decays slower than the Gaussian distribution .Page 7, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- In other words, by knowing the distribution of free energy, one can derive the probability distribution of the equilibrium constant K (logK = %) as well since the logarithm of the equilibrium constant K is directly related to the free energy difference between the native and nonnative states (the nonnative states are Gaussian distributed while the native state is very narrowly distributed).
- In contrast to the gaussian distribution , the log-normal distribution has a longer tail representing the higher frequencies of equilibrium constant when plotted in the original scale without taking the logarithm.Page 11, “Microscopic Atomic Binding Model and Simulation Results”
- In particular we obtained the analytical functional form of the probability function of the binding free energy to be Gaussian distributed near the mean and exponential-like distributed in the tail.Page 17, “Summary and Conclusion”
- The statistical distribution of the intrinsic specificity ratio is also Gaussian distributed near the mean and exponentially distributed near the tail.Page 17, “Summary and Conclusion”
- It is also Gaussian distributed:Page 20, “Analytical Models for Binding”

See all papers in *April 2015* that mention Gaussian distributed.

See all papers in *PLOS Comp. Biol.* that mention Gaussian distributed.

Back to top.

Appears in 10 sentences as: RMSD (15)

- We can use RMSD as order parameter to describe the position of an ensemble of states in the landscape.Page 4, “Theory and Analytical Models”
- In this study, the first passage time(FPT) to reach the native binding state(the time required for the random walker to visit order parameter RMSD ~ 0 for the first time) is used as a typical or representative time scale for binding.
- In Fig 10A—10C, we also show the one dimensional projection of binding free energy landscape to RMSD with different ligands with different intrinsic specificity characterized by ISR.Page 14, “Microscopic Atomic Binding Model and Simulation Results”
- In this report, we use the RMSD as an order parameter ( RMSD represents the root mean square distance relative to the native binding structure) that represents the progress of binding towards native state.Page 20, “Simulations”
- For activation process, the order parameter or reaction coordinate RMSD is likely to be locally connected.Page 20, “Simulations”
- It is straightforward to see that the overall kinetic process involves diffusion in order parameter RMSD space.Page 20, “Simulations”
- In other words, one can start with a general kinetic master equation, by assuming the local connectivity in RMSD , derive a diffusion equation [26—30, 32]:Page 20, “Simulations”
- Where P(RMSD,t) is the probability of the biomolecular binding complex With specific RMSD at time t, D(RMSD) is the diffusion coefficient and P(RMSD) is the free energy of the system at RMSD .Page 20, “Simulations”
- In terms of the order parameter RMSD , the problem becomes one dimensional diffusion.Page 20, “Simulations”
- RMSD = RMSDf, Where the system is in the nonnative states: P(RMSDf-, t) = O.Page 20, “Simulations”

See all papers in *April 2015* that mention RMSD.

See all papers in *PLOS Comp. Biol.* that mention RMSD.

Back to top.

Appears in 8 sentences as: binding affinities (6) binding affinity (3)

- The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail.Page 1, “Abstract”
- The conventional specificity refers to the discrimination of binding affinities between a specific ligand with different receptors.Page 4, “Theory and Analytical Models”
- From the above equilvalence discussions in terms of probing the interactions of molecular recognition, another way of quantify the specificity is to find the discrimination in binding affinities of a ligand binding with different binding sites of a receptor.Page 4, “Theory and Analytical Models”
- The power law behavior of the equilibrium constant in the tail therefore indicates that most of the binding molecules show small binding affinities , only occasionally a specific pattern will lead to high affinity.Page 9, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- Notice that due to the equivalence of the ensemble eXploring different ligands and ensemble exploring different interactions through different atomic contacts of specific ligands to receptor, the statistical distribution of the physical relevant quantity such as binding affinity from different ligands binding to the same receptor is equivalent to the distribution of the one obtained from different interactions of the specific ligand-receptor binding interactions through spatial atomic contacts(See Fig 1).Page 11, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- Therefore in analytical model, for example, we can obtain the distribution of binding affinity for the ensemble of different atomic contact interactions (with different nonnative unbinding states).Page 11, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- Validation of Autodock scoring to predict the binding affinities for 20 drugs against the Cox-2.Page 12, “Microscopic Atomic Binding Model and Simulation Results”
- Thus, based on the fitted parameter from relatively small ligand database (about 700 members in the current study), which statistically attain binding affinities in the range of -4kcal/mol to -12kcal/mol; it is possible to derive information regarding the much higher binding affinities for larger libraries.Page 17, “Z‘A j§;~9.5 9=°a’ o”

See all papers in *April 2015* that mention binding affinities.

See all papers in *PLOS Comp. Biol.* that mention binding affinities.

Back to top.

Appears in 6 sentences as: distribution function (4) distribution functions (2)

- The distribution function f has the form of:Page 6, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- Since the aforementioned distribution of free energy is the Gaussian in this study, one can easily obtain the distribution function of the equilibrium constant K as log-normal.
- So, the distribution function f of the equilibrium constants K or the affinity can be shown to be: which is a log-normal distribution near the mean above TC While which shows a power law decay near the low K value tail of the distribution (near or below TC).
- The whole distribution function is needed to characterize the system.Page 9, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- The probability and physical relevant quantity range is found to fit adequately the distribution functions from the analytical model, and the two kinds of curves are fitted well to the data in the center and near the tail.Page 17, “Z‘A j§;~9.5 9=°a’ o”
- We have confirmed the analytical form of the distribution functions with 720 diversified small molecules binding with a specific receptor: Cox-2 protein enzyme.Page 17, “Summary and Conclusion”

See all papers in *April 2015* that mention distribution function.

See all papers in *PLOS Comp. Biol.* that mention distribution function.

Back to top.

Appears in 6 sentences as: drug discovery (6)

- They can be applied to molecular selection, in vitro evolution process, high throughput screening and virtual screening for drug discovery .Page 2, “Author Summary”
- On the practical side, it is also under intensive investigations in drug discovery and pharmaceutical industry [3].Page 2, “Introduction”
- drug discovery .Page 6, “drug discovery.”
- Remarkably, the comprehensive knowledge of the statistics of affinity distributions in many studies have led to a better understanding of molecular selection [59] , and in vitro evolution process such as combinatorial library panning, SELEX technology exploring the RNA/DNA-ligand interactions [60—64] , and high throughput screening for drug discovery to study the receptors or enzymes binding with the lead compounds [65, 66].Page 17, “Z‘A j§;~9.5 9=°a’ o”
- For the lead compound search in drug discovery , high specificity is often achieved by increasing the specific hydrophobic interactions between the ligand and the target [20], while high affinity often relies on some crucial interactions such as hydrogen-bonding.Page 18, “Summary and Conclusion”
- When applies to drug screening, this suggests a multidimensional screening strategy using both affinity and specificity rather than affinity alone in the traditional drug discovery .Page 18, “Summary and Conclusion”

See all papers in *April 2015* that mention drug discovery.

See all papers in *PLOS Comp. Biol.* that mention drug discovery.

Back to top.

Appears in 5 sentences as: coupling strength (5)

- The Hamiltonian or energy function for the interactions between ligands and receptors can be described by the collections of contact interactions between the atom pairs E = 21-]- Iij 01-], where 01-]- is the contact variable between atoms i andj with certain distance cutoff and the Il-j is the coupling strength for specific contact pair between i and j.Page 6, “Results and Discussion”
- This forms a distribution for the coupling strength I.Page 6, “Results and Discussion”
- The interaction hamiltonian or the energy function of the system in terms the contact variables can be written as whereas Ii]- is the coupling strength between the one atom on a receptor and another one on a ligand.Page 19, “Analytical Models for Binding”
- The coupling strength Iij between the two atoms can have variety of values.Page 19, “Analytical Models for Binding”
- Wherel is the average coupling strength and A]2 is the variance.Page 19, “Analytical Models for Binding”

See all papers in *April 2015* that mention coupling strength.

See all papers in *PLOS Comp. Biol.* that mention coupling strength.

Back to top.

Appears in 5 sentences as: normal distribution (5)

- Based on the probability theory and statistics, if the random variable X is log-normally distributed, then Y = log(X) has a normal distribution .
- Likewise, if Y has a normal distribution , then X = exp(Y) has a log-normal distribution.
- Therefore, there is a physical explanation of the difference in distributions of binding kinetics: Above the characteristic transition temperature Tc, there are multiple parallel kinetic paths, each experiencing certain barriers (barrier has a normal distribution ), resulting in log-normal kinetics (seen also in protein conformational dynamics simulations [31]).
- We see that the logarithm of equilibrium constant can be fitted well with a normal distribution near the mean while near the tail can be fitted well with a exponential distribution.Page 11, “Microscopic Atomic Binding Model and Simulation Results”
- We also see that the distribution of the intrinsic specificity can be fitted well with the normal distribution near the mean and also well fitted with the exponential distribution at the tail.Page 13, “Microscopic Atomic Binding Model and Simulation Results”

See all papers in *April 2015* that mention normal distribution.

See all papers in *PLOS Comp. Biol.* that mention normal distribution.

Back to top.

Appears in 4 sentences as: energy barrier (4)

- Different free energy landscapes give different free energy barrier heights between the non-na-tive and native states.Page 14, “Microscopic Atomic Binding Model and Simulation Results”
- As we can see the large intrinsic specificity characterized by high ISR gives smaller free energy barrier and lower ISR gives higher barrier.Page 14, “Microscopic Atomic Binding Model and Simulation Results”
- We plot the free energy barrier height and the kinetic time for binding of these three cases as shown in Fig 10D.Page 16, “Z‘A j§;~9.5 9=°a’ o”
- This might be due to the increase of the free energy barrier for escaping the binding from the increase of the affinity.Page 18, “Summary and Conclusion”

See all papers in *April 2015* that mention energy barrier.

See all papers in *PLOS Comp. Biol.* that mention energy barrier.

Back to top.

Appears in 4 sentences as: energy difference (4)

- Since Log K is proportional to the free energy difference between the native and nonnative states termed as the stability or affinity, this infers that the free energy also has a distribution.Page 3, “Theory and Analytical Models”
- In other words, by knowing the distribution of free energy, one can derive the probability distribution of the equilibrium constant K (logK = %) as well since the logarithm of the equilibrium constant K is directly related to the free energy difference between the native and nonnative states (the nonnative states are Gaussian distributed while the native state is very narrowly distributed).
- Therefore, the time scale of binding from one binding state to a neighboring state is determined by the free energy difference of these two states.
- From this data, the statistical distribution of the affinity (defined as the free energy difference between the native state and the average of the free energy) of 720 small molecules with COX-2 was described.Page 11, “Microscopic Atomic Binding Model and Simulation Results”

See all papers in *April 2015* that mention energy difference.

See all papers in *PLOS Comp. Biol.* that mention energy difference.

Back to top.

Appears in 4 sentences as: Simulation Results (1) simulation results (3)

- We will first present the analytical results and then the simulation results .Page 6, “Results and Discussion”
- Therefore, these give the correspondences of the analytical results for distribution of the variables in different temperature ranges With the simulation results for distribution of the variables in different variable ranges.Page 7, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- Microscopic Atomic Binding Model and Simulation ResultsPage 11, “Microscopic Atomic Binding Model and Simulation Results”
- The fitting procedure for the simulation results .Page 21, “Supporting Information”

See all papers in *April 2015* that mention simulation results.

See all papers in *PLOS Comp. Biol.* that mention simulation results.

Back to top.

Appears in 3 sentences as: analytical results (3)

- We will first present the analytical results and then the simulation results.Page 6, “Results and Discussion”
- Therefore, these give the correspondences of the analytical results for distribution of the variables in different temperature ranges With the simulation results for distribution of the variables in different variable ranges.Page 7, “Analytical Models of Distribution of Affinity, Equilibrium Constants, Specificity and Kinetics”
- This confirms the analytical results discussed above.Page 11, “Microscopic Atomic Binding Model and Simulation Results”

See all papers in *April 2015* that mention analytical results.

See all papers in *PLOS Comp. Biol.* that mention analytical results.

Back to top.

Appears in 3 sentences as: binding sites (3)

- Under the assumption of large receptor protein (large enough to effectively represent the sequences of the diverse receptor universe), obviously searching for all the binding sites or pockets of a particular finite size protein is equivalent to searching for the whole universe of the receptors.Page 4, “Theory and Analytical Models”
- Therefore, in this case, probing interactions can be reached approximately equivalently by the following three approaches: (1) multiple ligands binding to the same receptor, or (2) multiple receptors binding to the same ligand, or (3) a ligand binding to a receptor exploring the different binding sites (modes).Page 4, “Theory and Analytical Models”
- From the above equilvalence discussions in terms of probing the interactions of molecular recognition, another way of quantify the specificity is to find the discrimination in binding affinities of a ligand binding with different binding sites of a receptor.Page 4, “Theory and Analytical Models”

See all papers in *April 2015* that mention binding sites.

See all papers in *PLOS Comp. Biol.* that mention binding sites.

Back to top.